AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

Interferometric techniques for discriminating multipath in ground to ground radar diagnostics with minimal constraints on collection geometry
L. Cech,C. Clarke, G. Fliss, J. Steinbacher, T. Coveyou, T. Kornbau, W. Nagy, November 1995

Due to inherent cost, safety and logistical advan­ tages over dynamic measurements, Ground-to-Ground (G2G, aircraft and radar on tarmac) diagnostic radar measurements may be the preferred method of assessing aircraft RCS for signature maintenance. However, some challenging complications can occur when interpreting SAR imagery from these systems. For example, the effect of ground induced multi-path often results in the measurement of a significantly different image based RCS than would have been obtained by a comparable Ground-to-Air (G2A) or Air-to-Air (A2A) system. Although conventional 2-D SAR images are useful in determining the physical source (down-range/cross­ range) of scatterers, it is difficult at best to deduce whether an image pixel is a result of direct (desired) or ground induced multi-path (undesired) scattering. ERIM and MRC recently completed an experiment testing the utility of collecting and processing interfero­ metric (2-antenna) SAR radar data. This effort produced not only high resolution SAR imagery, but also a com­ panion data set, derived from interferometric phase, which helps to isolate the source (direct or multi-path) of all scattering within the SAR image. Additionally, the data set gives a measure of the physical height of direct scatterers on the target. This paper outlines the experiment performed on a RCS enhanced F-4 aircraft using a van mounted radar. Conventional high resolution imagery (down-range/ cross-range/intensity) will be shown along with down­ range/height/intensity and cross-range/height/intensity images. The paper will also describe the processing pro­ cedure and present analysis on the interferometric results. The unique motion compensation processing technique combining prominent point and motion mea­ surement instrumentation data, eliminates the need for a tightly controlled collection path (e.g. bulky rail sys­ tems). This allows data to be collected with the van driven somewhat arbitrarily around the target with side mounted antennas taking measurements at desired aspects.

Enhancement of efficiency and accuracy of near-field measurement
G. Seguin,T. Pavlasek, November 1995

This paper examines the possibility of increasing the speed of Near-Field measurement of an Antenna, by reducing the number of measurement points and by determining the degree of truncation permissible while maintaining a prescribed degree of precision of the reconstructed far-field. The Near-Field of a planar radiating array is analysed in depth. A formulation and a procedure to correct the spectral domain of the field are established. It is shown that correction in the spectral domain can improve the accuracy of the Far-Field while using the same amount of Near-Field data. The technique has a good potential to be applied to Near­ Field data of large radiating Antennas leading to new information about the accuracy and speed of measurement achievable.

Influence of noise and calibration errors on HRR and ISAR
M.R. van der Goot,V.J. Vokurka, November 1995

Several approaches are known for the identification of non­cooperative air-borne targets with radar. Assuming that the tar­ get can be tracked during a certain flight path, observations from different aspect angles will be obtained. High-resolution radar (HRR) systems use these observations to create one-dimensional range profiles. With Inverse Synthetic Aperture Radar (ISAR) the data from all observed aspect angles are combined to obtain two-dimensional images. In recent years, techniques for resolution enhancement have been developed for both techniques. The choice for one of the two approaches should depend on the applicability of the target representation for identification. ISAR is the most suitable for reproduction on a display and identification by human observers. In case of identification by a machine, for example an algorithm on a computer, the choice is not straight­ forward. In this paper an overview of the influence of several errors on the performance of HRR and ISAR will be given. The error sources that will be evaluated are: • uncertainty of the absolute distance of the target; • errors in the mutual alignment of observations; • additive noise. The errors are generated numerically and applied to data from simulations and low-noise measurements. The influence of the bandwidth and angular span on the quality of the target reconstruction will be regarded as well as the performance of some high-resolution techniques. Finally, conclusions are drawn concerning the applicability of ISAR and HRR.

Triband radome measurement system: installation and testing results, A
V. Jory,G.W. Pearson, J.R. Jones, L.L. Oh, S.J. Manning, T.L. Norin, V. Farr, November 1995

In an earlier paper ("System Engineering for a Radome Test System," John R. Jones, et al, AMTA, October 1994) the system level design of a compact range enhancement for the testing of the Triband Radome was presented. This paper will discuss the installation and testing of the radome measurement system in the compact range. The purpose of the radome measurement system is to determine (within close tolerances) boresight shift, transmission loss, antenna pattern changes and polarization effects caused by the radome. Unique features include novel coordinate transformation and correction by means of a laser autocollimator and data reduction algorithms. Also featured is the tracking subsystem which consists of a specially designed two-axis track pedestal, an autotrack controller, and three five-horn compact range feed arrays operating at X, K, and Q-bands. The performance of the triband radome measurement system in the compact range setting will be presented.

Pattern measurement of ultralow sidelobe level antennas
A.E. Zeger,B.S. Abrams, November 1995

The development* of a real time electronic system to accurately measure the pattern of high gain, ultralow sidelobe level antennas in the presence of multipath scatterers is described. Antenna test ranges contain objects that scatter the signal from the transmitting antenna into the main beam of a receiving antenna under test (AUT), thereby creating a multipath channel. Large measurement errors of low sidelobes can result. The design and computer simulation of an Antimultipath System (AMPS) is complete. Fabrication of a feasibility demonstration model AMPS to operate with rotated AUTs to suppress indirect (scattered) components and permit accurate pattern measurements is almost done. Results to date show the likelihood of measuring sidelobe levels 60 dB below the main beam. * This project is sponsored in part by the Air Force Material Command under Rome Laboratory Contract Nos. F30602-92-C-0009, Fl9628-92-C-0130 and F 19628-93-C-02 l4.

Antenna measurements in the commercial world
J.F. Aubin,D.R. Frey, J.D. Berlekamp, November 1995

Due to rapid growth in the RF commercial market, new thinking is required in antenna measurement techniques. Certain customers, such as those designing cellular base station antennas, have unique requirements. One example of this is accurate front­ to-back ratio measurements. This is a difficult measurement to make inside an anechoic chamber, particularly at the currently used commercial frequencies. This paper focuses on a technique for measuring front-to-back ratio, which involves averaging patterns collected at different test antenna positions in order to resolve the chamber back wall reflection from the antenna back lobe measurement.

Test-zone field quality in planar near-field measurements
E.B. Joy,A.H. Tonning, C. Rose, EE6254 Students., November 1995

This paper reports on the results of computer simulations of planar near-field scanning and its ability to achieve an high accuracy test-zone field over a wide range of pattern angles. An quality test-zone field was defined for this study to have less than 0.2 dB peak-to-peak amplitude variation and less than 1.5 peak-to­peak phase variation. This investigation sought the minimum scan length, for a given critical angle, ec and separation, S. The minimum scan length determined from this investigation is given by: L = D + 2S(tan(0c)) + 20/cos(0c). This scan length is approximately 60),, larger, for a critical angle of 70 degrees, than previously accepted. It is suggested that the maximum practical value of Sc is between 60 and 70 degrees. The use of raised cosine amplitude and/or quadratic phase windows to the edges of the measurement plane is shown to provide test-zone field quality improvement and/or allow scan lengths approximately 10),, smaller.

Triband radome measurement system: installation and testing results, A
V. Jory,G.W. Pearson, J.R. Jones, L.L. Oh, S.J. Manning, T.L. Norin, V. Farr, November 1995

In an earlier paper ("System Engineering for a Radome Test System," John R. Jones, et al, AMTA, October 1994) the system level design of a compact range enhancement for the testing of the Triband Radome was presented. This paper will discuss the installation and testing of the radome measurement system in the compact range. The purpose of the radome measurement system is to determine (within close tolerances) boresight shift, transmission loss, antenna pattern changes and polarization effects caused by the radome. Unique features include novel coordinate transformation and correction by means of a laser autocollimator and data reduction algorithms. Also featured is the tracking subsystem which consists of a specially designed two-axis track pedestal, an autotrack controller, and three five-horn compact range feed arrays operating at X, K, and Q-bands. The performance of the triband radome measurement system in the compact range setting will be presented.

High power superposition for active array transmit pattern measurement
J. Hoffman,B.L. Galebach, K. Thompson, November 1995

Measurement of active array high-power transmit patterns in an indoor near-field facility raises significant issues concerning safe microwave power levels and absorber power-handling capability. An extension of the planar near-field measurement technique for the safe and accurate measurement of active array high power transmit patterns is considered to address these issues. This new technique involves sequentially turning on groups of elements around each probe position while making measurements for each group of activated elements. Simulation results indicate that this technique is potentially feasible for safely and accurately measuring low sidelobe active array transmit patterns.

Simulation of errors in near-field facilities
D.J. Janse van Rensburg,G. Seguin, S. Mishra, November 1995

A technique for estimating measurement errors in near­ field facilities is presented. Known mechanical and electrical errors can be accounted for in simulation and such results are presented here. Unknown factors like chamber reflection and instrumentation drift can be estimated via selective measurement and the error induced by such anomalies may be combined with the simulated findings to provide error patterns for a particular test antenna and facility. Results are shown where these patterns are used to calculate measurement error limits. The software presented here also allows the generation of parametric curves which show the impact of a parameter of interest.

Method to transform measured Fresnel patterns to far-field based on a least-squares algorithm with probe correction, A
F. Las Heras,B. Galocha, J.L. Besada, November 1995

A method to transform Fresnel field data to far-field data with probe correction, based on a non linear least­ squares algorithm, is presented. The functional to be considered is the expression of the Fresnel field radiated by an array of isotropic sources located on the antenna aperture, and the complex excitations are the coefficients that minimize the rms error between the measured data and the functional values. The intermediate step of determining the complex excitations can be used as a diagnostic tool. Probe pattern correction has been included in the method, improving the performances of antenna measurement systems placed in small size anechoic chambers.

Near-field/far-field phase retrieval measurements of a prototype of the AMSU-B space-borne radiometer antenna at 94 GHz
C.A.E. Rizzo,A.P. Anderson, G. Junkin, November 1995

Far-field patterns obtained from planar near-field measurements of a prototype of the AMSU-B radiometer antenna by phase retrieval at 94 GHz are presented in this paper. Comparison with results from a compact range facility show good agreement within the main beam A modified algorithm takes into account any misalignments of the two intensity data sets so that the RMS near-field error metric comparing retrieved and measured values converges to < -30 dB. Phase retrieval is revealing itself as a useful technique to be applied to electrically large antennas at frequencies extending into the millimetre and sub­ millimetre bands.

Convenient, multi-platform, boresight mounting scheme for compact range, A
M.H. Sewell,H.L. Tsao, J.P., Jr. Walker, M.J. Mullaney, R.W. Currey, T.L. Warnock, November 1995

Accurate mechanical-to-electrical axis alignment (boresighting), gain, and pattern testing of radar antennae requires specialized tooling/fixturing. This requirement is often taken for granted and seldom discussed in the EE community. Particularly in a production environment, where rapid change of test configurations to accommodate multiple radar platforms are required, a convenient mounting scheme is mandatory. This paper describes and illustrates a method implemented at the Warner Robins Air Logistics Center to satisfy this demand. Drawings and/or photos of a three-point Universal Adapter fixture and several UUT Specific radar mounting fixtures are discussed. The paper discusses tolerances, materials, manufacturing processes, alignment, and antenna boresight methodologies.

Investigation of multiple antennas for use in automobile applications, An
D.T. Fralick,C.J. Reddy, M.D. Deshpande, November 1995

Automobile manufacturers have noticed the proliferation of after market antennas, primarily for cellular phones, defacing their otherwise stylish vehicle designs. Investigations are being made by the manufacturers to include antennas for communications requirements, such as cellular phone, personal communications service (PCS), global positioning system (GPS) and Intelligent Vehicle Highway System (IVHS), within their vehicle This paper presents the initial phase of an investigation undertaken within the Research Branch (ERB) of NASA Research Center (LaRC). The measurements, presented in this paper, were performed using a one-fourth scale model of a currently popular vehicle design. The bands of interest for this investigation include the cellular, GPS and FM broadcast frequencies. Comparisons of measured and computed patterns of commonly used antennas such as wire and microstrip patch antennas are presented.

Investigation of circular Archimedean spiral antenna for automobile applications
C.J. Reddy,C.R. Cockrell, D.T. Fralick, F.B. Beck, M.D. Deshpande, November 1995

Due to the revolution in communication technology very sophisticated communicative and navigational tools are becoming a part of automobile electronics. These different applications need antennas that operate at various frequencies and with different polarization requirements. One such antenna is a cavity-backed Circular Archimedean Spiral Microstrip Antenna (CASMA). This pa per will compare radiation pattern measurements of a CASMA with pattern predictions using a hybrid FEM /M oM/GT D technique. The measurements were done at NAS A-Langley Research Center's Low Frequency Antenna Chamber. The predicted and measured patterns are presented and are shown to exhibit a reasonable degree of agreement.

Performance of helicopter mounted HF antennas
C.R. Birtcher,C.A. Balanis, J. Peng, P.A. Tirkas, W.V. Andrew, November 1995

Finite-Difference Time-Domain (FDTD) is prov­ ing to be a practical and accurate technique for an­ alyzing and predicting the performance of anten­ nas mounted on complex structures. As part of an effort to develop and validate an FDTD code, the impedance and radiation patterns of helicopter mounted loop antennas are predicted and compared to full-scale and 1:10 scale measurements. The input impedance and coupling of HF loop an­ tennas on the scale model helicopter are measured in the ElectroMagnetic Anechoic Chamber facility at Arizona State University. Although made difficult by the large mismatch between the highly reactive HF antennas and the instrumentation, the scaled impedance measurements agree well with the full­ scale measurements and predictions. In addition, ro­ tor blade modulation effects on the input impedance are examined.

Ferrite loaded cavity-backed slot antennas: analysis and measurements
D.M. Kokotoff,C.R. Birtcher, E. El-Sharawy, November 1995

Due to the limited size of modern helicopters, airborne antennas must be physically small and lightweight. Slot antennas have been widely used by the aerospace community to meet the size, weight, and aerodynamic requirements when flush-mounted to a platform surface. Having these characteristics, a ferrite-loaded cavity-backed slot (CBS) antenna is an excellent choice for as a tunable low-frequency antenna. Excitation of a magnetostatic mode in the ferrite results in resonances at frequencies below those of the dynamic modes of dielectric-loaded CBS antennas. Frequency agility is achieved by varying the applied DC magnetic bias. Two ferrite-loaded CBS antennas were built and their impedances and radiation patterns were measured. Reasonable (0-6 dBi) with dynamic 3 dB bandwidths in excess of 20% were measured in the UHF band. Air-filled versions of these antennas agree well with Method of Moments (MoM) predictions, but non-uniformity of the magnetic field in the ferrite violates assumptions made in the theoretical model, resulting in discrepancies.

Deconvolution method for correcting antenna measurement errors in compact antenna test ranges, A
P.L. Garcia-Muller,J-L. Cano, R. Torres, November 1995

High performance antennas require very accurate measurements which are difficult to meet in the conventional compact antenna test ranges. This measurement errors are produced by the non perfect plane wave synthesized by the compact range system. By the application of the reaction between the antenna under test true pattern and the compact range incident field, a closed form relation is found for the measured radiation pattern. Under certain conditions, this measured pattern can be approximated by the convolution of the two diagrams. In this paper it is presented the inverse procedure: the deconvolution to numerically calculate either the true radiation pattern of the antenna under test or the plane wave spectrum of the compact range incident field . The effectiveness and limitations of the method are discussed by numerical simulations and tested by measurements.

Cross-polarized pattern measurement on point-source compact ranges
D.W. Hess, November 1994

Earlier measurement results are reviewed to understand the result that cross -polarized patterns agree well when compared between a point-source compact range and spherical near-field scanning. By taking account of the symmetry of the aperture distribution, one can see how the cross-polarized pattern can be affected only moderately by the classic polarization feature of an offset reflector geometry.

Probe compensation characterization and error analysis in cylindrical near-field scanning
Z.A. Hussein, November 1994

A novel computer simulation methodology to properly characterize the role of probe directivity/pattern compensation in cylindrical near­ field scanning geometry is presented. The methodology is applied to a linear test array antenna and the JPIJNASA scatterometer (NSCA1) radar antenna. In addition, error analysis techniques of computer simulation and measured have been developed to determine the achievable accuracy in pattern measurements of the NSCAT antenna in cylindrical near field.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30