AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

Phaseless and Conventional Planar Near-Field Antenna Measurements: Effects of Random and Systematic Probe Position Errors
R.G. Yaccarino,Y. Rahmat-Samii, November 2000

Considerable progress has recently been made in the application of phase retrieval methods for phaseless near-field antenna measu rements. These techniques have sufficiently matured so that accurate antenna measurements can be performed when the phase information is either unavailable or inaccurate. A comparison of conventional (amplitude and phase) and phaseless (amplitude only) planar near-field measurements for non-ideal measuring probe locations is examined via simulated array antenna case studies involving both random and systematic errors. It will be demonstrated that the presented phase retrieval algorithm can more accurately reproduce the true pattern of the antenna under test because of the diminished sensitivity of the amplitude of the near­ field, as compared to the phase, with respect to the measuring probe locations. This phase retrieval approach requires no knowledge of the actual measurement locations, other than the nominal location of the two required measurement planes, and is suitable for relatively large probe position errors.

Evaluation of the Accuracy of the PTP Phase Retrieval Algorithm by Means of a Numerical/Statistical Approach
C.A.E. Rizzo, November 2000

Obtaining far-field radiation patterns of high frequency antennas (>80Ghz) from near-field measurements has been an important issue in the last twenty years. However with frequencies increasing into the millimetre and sub-millimetre bands, questions have been raised about possible limitations on the assessment of such antennas and in particular the measurement of phase. The PTP phase retrieval algorithm addresses the problem by extracting the phase from the knowledge of two amplitude data sets in the near-field. The accuracy of the algorithm is studied by simulation and measurement by means of a numerical/statistical approach. Pseudo-random phase apertures can be generated using Zernike polynomials, which in turn can be used as initial estimates for the algorithm. This paper shows some simulated and measured results for various separations. It can be seen that different pseudo-random phase functions can affect the accuracy of phase retrieved results in particular when the distance between planes is considerably small in relation to the AUT size.

Digital Beam-Forming Antenna Range
M. Tanabe,D.S. Fooshe, November 2000

Toshiba Corporation, working with Nearfield Systems Inc., has a fully digital antenna measurement system for digital beam-forming (DBF) antennas. The DBF test facility is integrated with the large 35m x 16m vertical near-field range installed at Toshiba in 1997 [3], and includes the NSI Panther 6500 DBF Receiver as the primary measurement receiver. The DBF system was installed in March 1999 and has been used extensively to test and characterize a number of complex, high performance DBF antennas. A DBF antenna typically incorporates an analog-to­ digital (AID) converter at the IF stage of the transmit/receive (T/R) module. The digital IF signals are transferred to a digital beam-forming computer, which digitally constructs, or forms, the actual antenna pattern, or beams. Since the interfaces to the DBF antenna are all digital, the usual microwave mixers and down-converters are incompatible. The NSI Panther 6500 is designed to interface directly with DBF antennas and allows up to 8 channels of I and Q digital input (16 bits each) with 90 dB dynamic range per channel. The NSI DBF receiver solves the DBF interface problem while providing enhanced performance over conventional microwave instrumentation. [2].

Small, Broadband, Dual-Polarized, Phased Array Aperture Implemented Using Flare Notch Elements, A
A. Torres,A. MacFarland, P. Beyerle, W. Mohuchy, November 2000

The purpose for this advanced development program was to design, fabricate and test a physically small, broadband, dual-polarized, phased array antenna aperture using Flare Notch elements. The array was designed to operate in the 4 to 18 GHz frequency spectrum, having a VSWR of less than 2:1 and capable of handling 10 watts per element. The array was configured with polarization diversity, essentially, dual cross elements are used which are excited in phase or out of phase depending on the application. One of the significant accomplishments of this research effort was the elimination of grating lobes and the reduction of the size of the elements. Another significant accomplishment is the feeding of dual flare notch elements with a broadband microstrip match network. The antenna elements were implemented using Rogers 4003 materials. Fabrication of the elements and assembly of the elements is being done in a configuration of two rows by twelve elements of which only eight elements are normally excited. The remaining elements are used as parasitics to support the desired radiation pattern. The research work is being done in support of the next generation of solid state broadband radiation systems presently under development for ECM applications.

Method to Simulate the Antenna Radiation Patterns Measured in a Compact Range
P.R. Rousseau, November 2000

An important source of error in a compact range antenna pattern measurement is the deviation of the quiet-zone field from the perfectly fiat amplitude and phase of a plane wave field. Although some guidelines and rules of thumb exist that relate the quiet-zone field to the error in the measured antenna patterns, the error or perturbation is dependent on the particular type of antenna that is being measured. For example, the non-ideal quiet­ zone field will produce very different errors for a small horn than for a large phased array. A realistic error budget or uncertainty analysis of the compact-range measurement requires knowledge of the antenna pattern uncertainty as a function of the quiet-zone field and the particular antenna of interest. A simulation method is derived using reciprocity that allows one to quantify the perturbations induced in a given antenna pattern when the quite-zone field distribution is known. This is particularly useful, since one typically has a fair estimate of the antenna pattern and has measured data of the quiet-zone field. The simulation is tested by modelling the antenna as a collection of elemental current sources and simulating the quiet-zone field as generated by elemental current sources. Using this simple simulation model, a closed-form near-field antenna pattern may be calculated for comparison with the more general computer simulation derived from reciprocity.

Broadband Polarization Selectable Feed for Compact Range Applications, A
C.W. Sirles, November 2000

Many aircraft radome structures are designed to operate simultaneously over multiple RF bands and incident polarizations. Critical parameters must be measured over the electrical apertures of the radome and across each operating band. Automated measurement techniques are required to efficiently collect the large volume of test data required. A modular broadband feed assembly has been developed to allow the simultaneous collection of multi-band, multi-polarization data on a compact range without the need to mechanically change feeds. The feed assembly utilizes a sinuous antenna as the radiating element and is capable of operation from 2-18 GHz with electronically selectable polarization states. Feed design criteria as they relate to compact range antenna and radome measurements are discussed. Of primary importance are reflector illumination pattern, linear polarization cross-polarization level, and circular polarization axial ratio. Polarization switching requirements for a specific test application are defined and the physical implementation of the integrated feed assembly is described. Measured feed and quiet zone performance data is presented for this application. The polarization switching configuration can be readily modified to support other applications.

Advanced Serration Design for Compact Ranges with UTD
J. Hartmann,D. Fasold, November 2000

Nowadays, highly accurate antenna pattern and RCS measurements are performed in compensated compact range test facilities, which fulfil the stringent space requirements for measurements up to 500 GHz and more. As the suppression of diffracted fields from the reflectors mainly determine the quiet zone field performance, the reflector edge treatment is an important design parameter for this type of test facilities. Within the present paper a novel serration design wm be shown. The analyses as well as measurement results exhibit a clear improvement of the quiet zone field performance when compared to previous solutions. The new serration design was implemented and proved with the CCR 20/17 of Astrium GmbH at the Munich University of Applied Sciences.

System Design of a Compact Range Verification Facility for Large Multi-Band Radomes
C.W. Sirles, November 2000

Compact ranges have found wide use in the pa rametric characterization of high performance radomes such as those found on modern military aircraft. A properly designed compact range facility provides a stable, repeatable test environment suitable for the measurement of small variations in antenna boresight position (beam deflection), antenna pattern distortion, and transmission loss. Radomes have increased in complexity from small structures housing a single antenna to multi-band, multi-system structures large enough to stand inside. Similarly, compact range reflectors have increased in commercial units available today provide quiet zone extents of 12 feet or larger. This paper describes the system design and performance of a compact range test facility designed to test a C-130 Combat Talon II nose radome measuring 7 feet in length and diameter. The facility was constructed at Robins AFB, GA, and is in operation. A description of the facility and its major subsystems is given. Sizing of the chamber and layout of equipment is described. Chamber electromagnetic design considerations are discussed. Electromagnetic design was complicated by the physical size of the structure required to mount the radome, by the fact that multiple antennas and gimbals are present inside the radome during testing, and by the need to use a broad band feed to eliminate mechanical feed changes. Absorber layout and control of spurious reflections is discussed. Electromagnetic performance data is presented.

Planar Source Reconstruction and Far Field Calculation From Near Field Hemispherical Acquisition
F. Las-Heras,B. Galocha, November 1999

A reconstruction method that calculates bi-dimensional equivalent magnetic currents from the tangential electric field components over a hemispherical region is presented. The method is applied for diagnosis as well as for near field to far Field (NF-FF) transformation. The method is well suited for antenna radiation pattern measurement using a near-field spherical acquisition system in anechoic chamber.

Characterization of Antenna Patterns by Means of Statistical Image Classification
J. McCormick,B. Ghinelli, November 1999

The accuracy of near field measurements have in the past largely been judged by inspection however the authors have developed an objective measure of the accuracy and repeatability of such measurements. This paper illustrates the measurement process and the techniques associated with statistical image classification used to confirm its accuracy and repeatability. The technique will be illustrated via the correlation of data sets acquired over a variety of different frequencies and scan plane areas. The examination of these measurements will demonstrate the applicability and sensitivity of the technique when the accurate assessment of highly correlated patterns is required.

Extending the Angular Coverage of Planar Near-Field Measurements by Combining Patterns From Two or More Antenna Orientations
A.C. Newell,G. Hindman, November 1999

The angular coverage of planar near-field measurements is limited by the size of the scan plane, and the "region of validity" is defined by the angle between the edge of the AUT and the edge of the scan plane. In some applications, results are required over a larger angular region than is possible with the available scanner. The angular coverage can be increased by rotating the antenna and repeating the measurement. The results of the two measurements are then combined. Successful combination depends on using both the coordinate system and vector components that are appropriate for the antenna rotation. In general for a single antenna orientation, any coordinate system can be used with any vector components, but when combining or comparing patterns for two antenna rotations, the axis of rotation must be the polar axis and the vector components must correspond to that coordinate system. Measurements results will be used to demonstrate the proper choice of coordinates and components and to illustrate potential problems that may arise.

Compact Antenna Test Range Built to Meet the Unique Testing Requirements for Active Phased Array Antennas, A
R. Sauerman,C. Stoffels, November 1999

Microwave Instrumentation Technologies (MI Technologies) in cooperation with Hollandse Signaalapparaten B.V. (Signaal) and the Royal Netherlands Navy has designed and produced a compact antenna test range to specifically address the unique testing requirements imposed in the testing of active phased array antennas. The compact range was built specifically to test Signaal's new Active Phased Array Radar (APAR) prior to introduction into various naval fleets throughout the world. This reversible Compact Antenna Test Range (CATR) allows antenna testing in both transmit and receive modes. The measurement hardware is capable of testing both CW and pulsed waveforms with high dynamic range. In addition to conventional antenna pattern measurements the system is capable of measuring EIRP, Gff and G/NF, as well as providing analysis software to provide aperture reconstruction. A special Antenna Interface Unit (AIU) was designed and built to communicate with the Beam Steering Computer which controls the thousands of T/R modules which make up the APAR antenna system. A special high power absorber fence and other safeguards were installed to handle the transmit energy capable of being delivered from the APAR antenna system.

Satellite Payload Parameter Measurements in a Compensated Compact Antenna Test Range
J. Habersack,H. Kress, H-J. Steiner, W. Lindemer, November 1999

Modern Satellite Antennas and Payloads are characterized by a lot of physical parameters like e.g. Radiation Pattern, Gain, EIRP, Flux Density, Gff and PIM, whereas the available time frame for measurements is getting shorter and shorter. The DSS Compensated Compact Range (CCR) allows a time efficient measurement of all payload parameters with high accuracy under controlled environmental conditions. The CCR consists of two doubly curved reflectors, which prevent inherent cross-polarization and create a very high constant amplitude and phase distribution in the quiet zone with a very good scanning performance. Most of the payload parameters can be measured directly or have to be calculated from a set of measurement values. For the G/T measurement of active antennas a new method for the noise power measurement was established. This paper describes the principle test set-ups with the corresponding measurement techniques to improve the measurement accuracy. Error budgets will be presented for pattern and gain measurement.

Wideband Radar Echoes From Cylindrical Rods
P.S.P. Wei,A.W. Reed, E.F. Knott, November 1999

In order to assess the suitability of long thin metal rods as calibration devices for both co-polarized and cross-polarized (abbreviated as co-pol and x-pol) RCS measurements, we study RCS data from rods at broadside and compare them with 2D theoretical predictions. We find that the 45° tilt angle is optimum for calibration purposes. Near grazing incidence to a horizontal rod, the first traveling wave lobe in the HH pattern is a very prominent feature. Its angular location and amplitude have been measured as a function of frequency and compared with theory. A formerly unexplained error due to a contaminated calibration is identified.

SAR Interferometry for Structural Changes Detection
D. Leva,A.J. Sieber, D. Tarchi, H. Rudolf, November 1999

The interferometric measurements for the structure­ change detection of a dam due to water level change and to seasonal temperature variation is presented. The instrument used is the Linear SAR (LISA) of the European Microwave Signature Laboratory, which allows two synthetic apertures, one linear of 5 meters length and another circular of about 2 meters. The microwave instrumentation, based on a vector network analyzer and on a pair of wide-band antenna, allows a dual polarized measurement in a frequency band, ranging from 500 MHz to 6 GHz. In this particular context, fully polarimetric measurements have been performed in the frequency band from 5.2 to 6 GHz. From the selected measurements parameters a spatial resolution on the structure of about 30 by 30-cm is achieved. Measurements have been repeated at 7 different dates in the period from June to September. From the set of obtained images a large number of differential interferograms was been formed corresponding to different deformation conditions of the barrage. Results showing the deformation pattern, clearly visible on the whole imaged portion of the structure, are presented. The comparison between measured displacements by D-InSAR and those from the barrage monitoring system in the selected points where traditional tools are installed are in good agreement.

Low-Power Characterisation of the TJ-II Stellerator Quasi-Optical Beam Waveguide
A.F. Curto,C. del Rio, J. Marti-Canales, J. Teniente, K.M. Likin, M. Sorolla, R. Gonzalo, R. Martin, November 1999

Plasmas inside the TJ-II Stellerator are generated by heating the electron cyclotron resonance waves with a high-power millimeter-wave beam from gyrotron generators and through two transmission lines. Both lines have been tested at nominal power level and they are currently in operation. This paper is devoted to the low-power testing of the transmission lines performed before their operation at high power level. A corrugated horn antenna was designed to generate a pattern that simulates the gyrotron output. In order to evaluate the set up, a twofold approach was taken. On one hand, the antenna pattern was measured and compared with the predicted one. On the other hand, the beam propagation through the mirror line was measured and simulated using Huygens diffraction theory. The comparison of the theoretical and experimental results from both the corrugated antenna and propagation through the transmission line are presented in this paper.

Design and Testing Techniques for Automotive Conformal Diversity Antennas
W. Villarroel,E.K. Walton, November 1999

The automobile antenna industry is facing two rapidly growing trends: (1) the incorporation of effective, low cost, AM/FM conformal antenna designs and (2) the antenna capability to handle diversity FM radio receivers. The development of techniques for testing automotive conformal diversity antennas' performance becomes necessary to evaluate and compare them. Testing techniques to obtain the antenna Input Impedance (Zin), Standing Wave Ratio (SWR) and Mismatch Loss (MML) as well as the azimuth gain patterns and the combined diversity signal (maximum of the diversity signals) are described. Experimental results for the Annular Slot Windshield Diversity Antenna using polarization diversity are shown. It is demonstrated that the Annular Slot Windshield Diversity Antenna can be used effectively to reduce multipath fading.

Evaluation of Scattering Level of TT&C Antennas with Geometrical Scale Modeling Technique
J.Y. Lee, November 1999

Omnidirectional antennas are typically used as Tracking, Telemetry and Command (TT&C) antennas for satellites. However, the omnidirectional patterns of TT&C antennas located on satellite structures are susceptible to substantial scattering and polarization mismatch loss, especially at the initial mission stage. Consequently, it is very important to properly evaluate the extent of these effects for each of the initial mission configurations. In this paper, measurement techniques to achieve proper evaluation of scattering level and polarization mismatch loss for TT&C antennas of NASA's Tracking and Data Relay Satellite (TDRS) are presented. The paper encompasses a test approach, a test procedure and test results. Application of these test techniques is essential to the TDRS TT&C antenna qualification program.

Technique for the Approximate Compensation of Antenna Illumination Taper from Near Field Measured, ISAR Data Sets, A
K. Krause, November 1999

This paper presents an approximate, practical technique for the compensation of antenna pattern amplitude taper effects that occur in near field RCS data. The technique uses inverse synthetic aperture radar (ISAR) data sets. Complete pattern determination uses an iterative approach over target rotation angle and frequency bandwidth, with a series of near field ISAR images as input to obtain the corresponding corrected, near field, frequency/azimuth pattern data. Assumed is direct target illumination using a source with a known angular illumination pattern. The technique and its application environment in the Boeing Near Field Test Facility is described. It is then demonstrated using a near field data collection range of 100 feet from the target center of rotation. The approach is shown to be effective for target sizes with cross range extents extending to the one-way 3 dB points of the illumination taper (two-way 6 dB points). Demonstration of compensation performance and a study of accuracy achievable versus the near field image parameters used is presented.

Automation of Radar Image Processing of Airborne Targets
B.M. Lamb,D.C. Yoon, November 1999

We present innovations based on pattern recognition technology that significantly reduce the level of human intervention and increase data throughput when processing radar images of airborne targets. Time consuming operator intervention is normally required to insure that images are centered and non-aliased and wireframe overlay drawings are properly registered with the target image. We have developed techniques that produce high-quality images without operator intervention. These include a template registration algorithm that can reliably orient the outline drawing with a radar image even in the presence of image artifacts such as jet engine modulation (JEM). In addition, we have developed methods that remove the average Doppler responsible for crossrange image displacement or aliasing and methods that resolve downrange ambiguities. Examples are shown which illustrate these processes applied to images of a jet aircraft in flight.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30