AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

Comparison of the Classical Mode Expansion and the Equivalent Current Method for Near-Field to Far-Field Transformations Using Data from Arbitrary Surfaces
J. Migl,H. Schippers, J. Habersack, J. Heijstek, T. Fritzel, November 2006

Nowadays near-field measurement techniques are widely used for detecting the characteristics of the radiated pattern for a large variety of antennas. The core of any near-field measurement is the near-field to far-field transformation. Such transformations use different coordinate systems, like planar, cylindrical, or spherical, and may utilize special solutions. They are already well known for many years. The common feature of all mentioned near- to far-field transformations is the usage of regular measurement grids on planar, cylindrical, or, respectively, spherical surfaces. Future applications, like the Airborne Near-Field Test Facility (ANTF) are expected to lack this characteristic of regular measurement grids, since the flying or floating probe platform cannot be guided sufficiently accurate. This requires the utilization of advanced data processing methods for interpolating measured data on an arbitrary irregular grid to a nearby regular grid, or direct transformation to the far-field. It will be shown that this data processing can be performed by using the Stratton-Chu representation formula utilizing equivalent currents on a well-chosen artificial surface or the classical mode expansion method with additional pre-processing. This paper describes briefly the principles of the ANTF, discusses the application of the equivalent current method and compares it with the widely used mode expansion method. Measured and processed data examples will be presented.

Integration and Testing of a Transmission Line System for an Electromagnetically Transparent Antenna Array
E. Lee, November 2006

A transmission line system has been developed for an electromagnetically transparent antenna array. The goal was to provide equal signal distribution to the array elements while maintaining the transmissivity of the antenna. The transmission lines consist of microstrip directional power couplers which are fed in series. This reduces the transmission line length needed. The transmission line was built, tested, and integrated with an array of circular polarized array elements mounted over a frequency selective surface (FSS) ground plane. Preliminary bench tests performed on the integrated array with a small test dipole indicated that the transmission lines provided uniform signal distribution. Outdoor far field measurements of the integrated antenna indicated that the antenna performance was satisfactory. The integrated antenna array was tested in the compact range located at the ElectroScience Laboratory at The Ohio State University. These tests were used to accurately characterize the antenna performance at S band and the transmissivity properties of the integrated array at L band. The measured antenna pattern and beamwidth were consistent with predictions. Transmissivity of the antenna as viewed by a second antenna was also consistent with predictions.

A Probe Station Based Setup for On-Wafer Antenna Measurements
K. VanCaekenberghe,K. Brakora, K. Jumani, K. Sarabandi, M. Rangwala, Y-Z. Wee, November 2006

A probe station based antenna measurement setup is presented. The setup allows for measurement of complex impedance and radiation patterns of an on-wafer planar antenna, henceforth referred to as the device under test (DUT), radiating at broadside and fed by a coplanar waveguide (CPW). The setup eliminates the need for wafer dicing and custom-built test fixtures with coaxial connectors or waveguide flanges by contacting the DUT with a coplanar RF probe. In addition, the DUT is probed exactly where it will be connected to a transceiver IC later on, such that no de-embedding of the measured data is required. The primary sources of measurement errors are related to calibration, insufficient dynamic range (DR), misalignment, scattering from nearby objects and vibrations. The performance of the setup will be demonstrated through measurement of an on-wafer electrically short slot antenna (.0/35 × .0/35, 5 mm2) radiating at 2.45 GHz.

Investigation into the Physical Mechanisms Underlying High-Frequency Pattern Degradation in Broadband, Double-Ridged Horns
J. McLean,A. Medina, H. Foltz, R. Sutton, November 2006

Double-ridged waveguide horns can provide better than 10:1 relative frequency bandwidth over which they exhibit excellent impedance match and power transfer characteristics. However, the radiation pattern of such an antenna generally becomes more complex at the high end of its operating frequency range. That is, the pattern degenerates from being predominantly single-lobed at lower frequencies to a more complicated pattern exhibiting four gain maxima around the principal axis, all of which are greater than the gain on the principal axis. Here, we present some numerical simulations that appear to indicate that this behavior might not be directly related to higher order modes in the feed region and is not due to manufacturing imperfections, but rather is simply due to the overall taper of the horn itself.

Nonlinear Interpolation Technique for Generating 3D Antenna Radiation Patterns
P. Vicharelli,D. Fagen, November 2006

This paper presents a generalized nonlinear interpolation technique for generating 3D antenna radiation patterns from 2D cross sections. The motivation for this work is that most of the patterns provided by antenna manufacturers are only available as vertical and horizontal cross sections. Accurate propagation calculations, however, require gain values at arbitrary orientations, corresponding to points on a 3D gain surface. After reviewing the current methods of generating such a gain surface, we find that linear interpolation algorithms seem the most promising, even though they can often lead to pronounced mathematical artifacts. To overcome these shortcomings a new nonlinear algorithm is proposed. The new approach mitigates, and in most cases eliminates, the artifacts produced by linear interpolation weights. The new method is fast, yields smooth, more realistic surfaces that are consistent with the vertical and horizontal cuts, exhibits diminished mathematical artifacts, and improves the accuracy of propagation calculations of radio frequency signals. Representative examples from the application of the new algorithm to cellular base station antenna patterns will be presented.

A Generalized Method to Diagnose Faults in Antenna Arrays Using Neural Networks
N. Sarma,D. Vakula, November 2006

A generalized method to diagnose a defective element of an antenna array using neural networks is presented. A defective element with no excitation is classified as on off faults (i.e., total failure) and with current variation from designed values are current magnitude and phase faults. A uniform linear array of 101 isotropic elements with half wave distance between them and 1 amp current excitation is considered. Complex deviation pattern is determined which is the difference between the measured radiation pattern of the array under normal condition and degraded radiation pattern of the array with any one defective element. One radial basis function neural network is trained with all possible angle values of deviation pattern to determine the number of the faulty element. Other radial basis function neural network is trained with all possible absolute value of deviation pattern to determine current in defective element. The trained network showed high success rate. Key words:-Artificial neural networks, Phased array, Radial basis function (RBF), Radiation pattern

Algorithmic Analysis of Adaptive Antenna Array for Directional Beam Forming with Error Minimization
U.V. Buch,S.B. Chakraborty, S.B. Sharma, November 2006

Adaptive antenna has both the amplitude as well as phase (as weights) can be adapted optimally to get required Direction of Arrival (DOA) estimation or directed beam forming. This paper tries to analyze state of the art criteria for Adaptive antenna, suppressing the interference in directions other than desired. We model the Uniform Linear array (ULA) based on simulations of various adaptive and non-adaptive algorithms. We list possible types of errors in brief. Element spacing and mutual coupling influence each other and affect the antenna element pattern. We formulate the array antenna that tries to reduce the error by optimally adjusting the weights. We make an attempt to model mutual coupling. A high precision array antenna can be designed keeping in mind error factors, optimum adjustment of the element interval and mutual coupling. An adaptive antenna optimal weight adjustment is discussed here. Key words: ULA, DOA, DBF.

Low Frequency Optimization of 72 Inch Absorbers
G. Sanchez,L. Hemming, November 2006

The purpose of this paper is to detail the process used to optimize the low frequency performance of 72 inch absorber. The loading optimization was required to provide enhanced performance of a twisted 72 inch absorber which was to be used in the building of a large aircraft test facility. The chamber performance requirements are over a frequency range of 30 MHz to 18 GHz. The chamber dimensions are 30 meters x 30 meters x 20 meters high. This chamber will be used to measure a variety of fighter aircraft for many EW scenarios. The mission of this facility is to “perform radiated immunity testing of aerospace vehicles with high electromagnetic field intensity, radiated emissions measurements, EMC testing, electronic warfare testing, antenna pattern testing”. Due to the broad frequency range and the fact that the chamber is desired to test both in the low frequency EMC domain and high frequency antenna measurements, an extremely broad band absorber material had to be developed and optimized. The use of ferrite hybrids was considered. Due to the roll off at microwave frequencies and the expense of such a high volume of materials, they were eliminated for cost and due to the limited performance in the 1-2 GHz frequency range. The ideal candidate is a 72 inch twisted pyramidal geometry. The standard loading of these materials is ideal for frequencies above 150 MHz.. The performance level in the 30 MHz to 150 MHz range is less than ideal. A design for the chamber was established with specific target performances required of the 72 inch absorbers. This paper describes the effort taken to optimize the loss properties of the dielectric foam to meet the target absorber performance required for the implementation of the design. Key Words: Absorber Measurements, Absorber Performance, Computer Modeling of Absorbers, Dielectric Properties of Absorber

Characterization of the PLANCK Radio Frequency Qualification Model and Preparations for Flight Model Tests
H. Garcia,C. Nardini, D. Dubruel, G. Forma, J. Marti-Canales, M. Paquay, November 2006

The measurement of the radiation patterns of the PLANCK Radio Frequency Qualification Model (RFQM) is one of the most important elements of the verification of the PLANCK telescope. PLANCK is one of the scientific missions of the European Space Agency and is devoted to observe the Cosmic Microwave Background radiation, with unprecedented accuracy. The satellite payload consists of two state-of-the-art, cryogenically cooled instruments sharing a dual reflector telescope with 1.5 m aperture and covering the frequency range from 27 GHz to 1000 GHz. As a key part of the telescope verification logic, the radiation patterns of the RFQM has been measured in the Alcatel Alenia Space Compact Antenna Test Range (CATR) at four frequencies (30, 70, 100 and 320 GHz) using representative flight feed horns of the focal plane unit. This paper presents the test logic, the measured radiation patterns, the custom-made instrumentation set-up, the correction techniques used and the final link to the Flight Model verification.

Adaptive Array Based Antenna Pattern Correction Technique
V. Viikari,A. Räisänen, J. Salo, V-M. Kolmonen, November 2006

Adaptive array based antenna pattern comparison technique is presented in this paper. In the method, the antenna pattern of the antenna under test (AUT) is measured several times at different positions in the quiet-zone. The corrected antenna pattern is obtained by taking a weighted average of the measured patterns. An array synthesis algorithm is used to obtain averaging weights at the different rotation angles of the AUT. In addition, the weights are adapted specifically for the AUT. The adaptive array correction technique is demonstrated in a hologram based compact antenna test range (CATR) at 310 GHz. The demonstration is based partly on the measurements and partly on the simulations. For verification, the accuracy provided by the method is compared to the accuracy provided by the uniform weighting.

Measurement Accuracy of Stereolithography (SLA) Scale Models
F. Plonski,A. Hoorfar, V. Mancuso, November 2006

Hand-made scale models in antenna measurements have been used since the late 1940s. Today, aircraft models are fabricated using a stereolithography (SLA) process and the Computer Aid Design (CAD) for manufacturing the full size aircraft. This is the fabrication method used for the V-22 1/15th scale model. Once the SLA machine is programmed, these models are very inexpensive to produce. In this paper, antenna patterns measured on the V-22 scale model are compared with antenna patterns measured on the aircraft in-flight. Comparison of the patterns shows high correlation. Figure 1 V-22 Aircraft

UHF Relay Antenna Measurements On Phoenix Mars Lander Mockup
P. Ilott,B. Arnold, D. Dawson, J. Harrel, N. Blyznyuk, R. Nielsen, November 2006

The Phoenix Lander, a NASA Discovery mission which lands on Mars in the spring of 2008, will rely entirely on UHF relay links between it and Mars orbiting assets, (Odyssey and Mars Reconnaissance Orbiter (MRO)), to communicate with the Earth. As with the Mars Exploration Rover (MER) relay system, non directional antennas will be used to provide roughly hemispherical coverage of the Martian sky. Phoenix lander deck object pattern interference and obscuration are significant, and needed to be quantified to answer system level design and operations questions. This paper describes the measurement campaign carried out at the SPAWAR (Space and Naval Warfare Research) Systems Center San Diego (SSC-SD) hemispherical antenna range, using a Phoenix deck mockup and engineering model antennas. One goal of the measurements was to evaluate two analysis tools, the time domain CST, and the moment method WIPL-D software packages. These would subsequently be used to provide pattern analysis for configurations that would be difficult and expensive to model and test on Earth.

B-1 Fully Integrated Data Link Program Measures Antenna Pattern and Isolation in Support of USAF Communication Systems Upgrade
P. Oleski,S. Grudzinski, November 2006

Antenna pattern and isolation measurements for the B-1 Fully Integrated Data Link (FIDL) Program have been completed at the US Air Force Research Laboratory (AFRL) Antenna Measurements Facility located near the AFRL Rome Research Site (RRS), Rome, NY. This combined satellite and airborne communications upgrade has been performed under the supervision of the B-1 Systems Group, Wright Patterson AFB, Ohio. One eighth scale antenna patterns were collected on a far field range for new Link-16 antennas, a relocated VHF/UHF2/L-Band antenna and the new Satcom transmit antenna, while on a one eighth scale B-1 model. Antenna to antenna isolation measurements were performed with antennas mounted on a full scale front section of the B-1 airframe. The RF Technology Branch (IFGE) has developed techniques for evaluating the effects of airframe and external stores on the radiation pattern characteristics of antenna systems in a simulated flight environment. Data obtained in this manner is used to evaluate antenna radiation characteristics of antenna/systems without the requirement of an extensive flight test program. Using similar techniques, AFRL has developed procedures whereby precision measurements of isolation between aircraft mounted antennas can be accomplished. This paper will present how the measured data was obtained for the antennas involved in the FIDL upgrade.

Measuring "As Installed" Aircraft Antenna Patterns
B. MacDougall, November 2006

Using software and measured receive power data from aircraft during flight test, the pattern of the installed antenna is derived and validated. During the test flight, data packets were continuously transmitted from an aircraft using the antenna under test. The aircraft flew a designated pattern having straight legs oriented at specific angles to the ground station. Throughout each of these legs the aircraft performed appropriate maneuvers to provide elevation pattern data. A ground station recorded the received data packet signal strength with GPS time tags. Position data of aircraft (latitude, longitude, and altitude) and attitude (roll, pitch, and yaw) was recorded with time tags. Satellite Tool Kit, (STK™), by Analytical Graphics Inc. [1] reproduces flight test conditions and calculates the predicted ground station receive power based on vector direction, range, and a theoretical pattern for the antenna under test. The result is a dynamic link budget and a graph plotting predicted received signal strength versus time. Overlaying the recorded ground station received signal strength with the predicted signal strength allows the correlation of the measured data to that calculated using the theoretical antenna pattern. Curves are presented which show correlation sufficient to validate pertinent portions of the theoretical antenna pattern.

Evaluation of Low-Cost Phased Array Antenna Design
J. Kemp,B. Mitchell, L. Corey, R. Cotton, November 2006

In the early 1990's, Georgia Tech Research Institute (GTRI) was able to acquire an unclassified phased-array antenna from the former Soviet Union. Since that time, GTRI personnel have analyzed the antenna for design features that enabled the production of low-cost phased-array antennas. Antenna pattern data collected on the GTRI planar near-field range of a working and errored antenna will be presented. Also, modeled antenna pattern data will be presented as a comparison to show the particular effects of the low-cost design versus an ideal antenna. Finally, the original control mechanism of the phased-array antenna will be analyzed and compared with a modern control mechanism developed by GTRI researchers. Control data for the original and new control systems was captured with a logic analyzer and will be presented for comparison.

Time domain Planar Near-Field Measurement Simulation
X. Shen,X. Chen, November 2006

The UWB radar operates simultaneously over large bandwidth and the antenna parameters must refer to simultaneous performance over the whole of the bandwidth. Conventional frequency domain (FD) parameters like pattern, gain, etc. are not adequate for UWB antenna. This paper describes an UWB radar antenna planar near field (PNF) measurement system under construction to get the impulse response or transient characteristic of the UWB antenna. Unlike the conventional antenna or RCS time domain test system, the UWB radar signal instead of the carrier-free short time pulse was used to excite the antenna that can avoid the decrease of the dynamic range and satisfy the needs of SAR and the other UWB radar antennas measurement. In order to demonstrate the data analysis program, FDTD simulation software was used to calculate the E-field of M×N points in a fictitious plane at different times just like the actual oscilloscope’s sampling signals in the time domain planar near field (TDPNF) measurement. The calculated results can be considered the actual oscilloscope’s sampling output signals. Through non-direct frequency domain near field to far field transform and direct time domain near field to far field transform, we get the almost same radiation patterns comparing to the FD measurements and software simulation results. At last, varied time windows were used to remove the influences of the non-ideal measurement environment.

Full Sphere Far-Field Antenna Patterns Obtained Using a Small Planar Scanner and a Poly-Planar Measurement Technique
S. Gregson,C. Parini, J. McCormick, November 2006

This paper presents an overview of work carried out in developing the probe-corrected, poly-planar near-field antenna measurement technique [1, 2, 3, 4, 5]. The poly-planar method essentially entails a very general technique for deriving asymptotic far-field antenna patterns from near-field measurements taken over faceted surfaces. The probe-corrected, poly-planar near-field to far-field transformation, consisting of an innovative hybrid physical optics (PO) [6] plane wave spectrum (PWS) [7] formulation, is summarised, and the importance of correctly reconstructing the normal electric field component for each of the discrete partial scans to the success of this process is highlighted. As an illustration, in this paper the poly-planar technique is deployed to provide coverage over the entire far-field sphere by utilising a small planar facility to acquire two orthogonal tangential near electric field components over the surface of a conceptual cube centred about the antenna under test (AUT). The success of the poly-planar technique is demonstrated through numerical simulation and experimental measurement. A discussion into the limitations of the partial scan technique is also presented.

Hemispherical Near-Field Antenna Measurements in an EMC Chamber Environment
G. Pinchuk,E. Katz, R. Braun, T. Kozan, November 2006

Hemispherical Near-Field (NF) antenna measurement technique has been applied for automotive antenna testing within a chamber dedicated to EMC tests. An existing turntable was used for azimuth rotation of a vehicle and a new portable 90°arch was added for elevation scanning of the radiated NF of the Device Under Test (DUT - vehicle with the antenna). Two antenna types were tested during chamber commissioning, one for GPS and another for XM satellite radio applications at frequencies 1.57 and 2.33 GHz respectively. Test results have shown that the EMC chamber can be successfully used for automotive antenna measurements as well, with accuracies acceptable for automotive applications. For higher operating frequencies, the EMC absorbers must be changed to less reflective material. In the paper, the measurement system is described, and the test results are presented, as well as some considerations on far-field pattern restoration based on measured hemispherical NF data.

Study of RCS Measurements from a Large Flat Plate
P.S.P. Wei,A.W. Reed, C.N. Ericksen, M,D. Bushbeck, November 2005

Abstract. We present new RCS measurements from an 8-foot square flat plate for frequencies from 0.15 to 5.5 GHz. Guided by the theory, we study the peak RCS at normal incidence, the principal plane pattern, and the 3-dB beam-width in detail. The broadside echo from the plate is found to be extremely narrow at higher frequencies. From the errors, we estimate that the wave-field experienced by the plate is reasonably uniform to within +0.3 dB, over a wide dynamic range of 60 dB.

Using a Chirp Z-transform on Planar Near-Field Data to Expand a Portion of the Far-Field with Increased Resolution and No Interpolation
D. Thompson, November 2005

This paper describes the use of a two-dimensional chirp z-transform (2D-CZT) to efficiently concentrate a large number of sample points in a single portion of the far zone without interpolation. This work presents the equivalence of transforms calculated from measured near-field data using both the 2D-CZT and 2D-fast Fourier transform (FFT). The paper also shows that the 2D-CZT is computationally more efficient than a zero-padded FFT when one requires a high resolution over a small area of the pattern.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30