Francesco D'Agostino,Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, November 2014
In the recent years, many efforts have been spent to reduce the time required for the near-field data acquisition, since such a time is nowadays very much greater than that required to perform the transformation. In this context, planar spiral scanning techniques exploiting continuous and synchronized movements of the positioning systems of the probe and antenna under test (AUT) have been proposed [1-4] to significantly reduce the measurement time. They are based on the nonredundant sampling representations of electromagnetic fields [5, 6] and use optimal sampling interpolation formulas to efficiently recover the data required by the classical plane-rectangular near-field – farfield (NF–FF) transformation [7] from those acquired along the spiral. In particular, the AUT has been modelled as enclosed in a sphere in [1, 2], whereas an oblate ellipsoid has been considered in [3, 4]. When dealing with a quasi-planar AUT, this last antenna modelling results to be more effective from the truncation error and data reduction viewpoints with respect to the spherical one. As a matter of fact, it is able to reduce the redundancy induced by the spherical modelling for such a kind of antennas and allows to consider measurement planes at distances less than one half of the antenna maximum size, thus lowering the error related to the truncation of the scanning surface. The goal of this work is to experimentally validate the NF–FF transformation with planar spiral scanning which makes use of the ellipsoidal AUT modelling [3]. The experimental tests will be performed in the Antenna Characterization Lab of the University of Salerno, equipped with a planepolar NF facility system, besides the cylindrical and spherical ones, and will fully assess the effectiveness of this technique, as well as, of that based on the spherical modelling, that can be obtained as particular case from the oblate one when the ellipsoid eccentricity goes to zero. [1] O.M. Bucci, F. D’Agostino, C. Gennarelli, G. Riccio, and C. Savarese, “Probe compensated far-field reconstruction by near-field planar spiral scanning,” IEE Proc. – Microw., Antennas and Propagat. , vol. 149, pp. 119–123, 2002. [2] F. D’Agostino, C. Gennarelli, G. Riccio, and C. Savarese, “Theoretical foundations of near-field–far-field transformations with spiral scannings,” Prog. in Electromagn. Res. , vol. 61, pp. 193-214, 2006 [3] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “An effective NF-FF transformation technique with planar spiral scanning tailored for quasi-planar antennas,” IEEE Trans. Antennas Propagat ., vol. 56, pp. 2981-2987, 2008. [4] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and M. Migliozzi, “The unified theory of near–field – far–field transformations with spiral scannings for nonspherical antennas,” Prog. in Electromagn. Res. B, vol. 14, pp. 449-477, 2009. [5] O.M. Bucci, C. Gennarelli, and C. Savarese, “Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples,” IEEE Trans. Antennas Prop. , vol. 46, pp. 351- 359, 1998. [6] O.M. Bucci and C. Gennarelli, “Application of nonredundant sampling representations of electromagnetic fields to NF-FF transformation techniques,” Int. Jour. of Antennas and Propagat. , vol. 2012, ID 319856, 14 pages. [7] D. T. Paris, W. M. Leach, Jr., and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antennas Propagat., vol. AP-26, pp. 373-379, May 1978.