AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Far Field

20 GHz active phased array characterization
J.P. Kenney,E. Martin, L.D. Poles, November 1994

The radiation characteristics for an active phased array receive antenna operating at K Band were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured for several scan angles. In this paper we'll discuss the general design of the antenna and the instrumentation ensemble used to perform the far field and near field characterization of this antenna. Measurements taken on a 2600 foot far field range vs. a near field planer scanner are compared.

High speed multi-frequency antenna measurements in the MDTI radar measurement center
J.D. Weatherington, November 1994

This paper demonstrates a high speed antenna measurement capability recently developed in the MDTI Radar Measurement Center. Originally constructed as a Radar Cross Section facility, the RMC has added the capability to measure antenna patterns on apertures up to 40-feet in length in the far field. Data will be presented to demonstrate system performance through the use of modern output formats, such as global plots and videotape presentations.

A Dual-frequency millimeter-wave radiometer antenna for airborne remote sensing of atmosphere and ocean, A
M.H. Francis,D. Kremer, D.A. Hazen, L.S. Fedor, M.D. Jacobson, W.B. Madsen, November 1994

Accurate multiwavelength radiometric remote sensing of the ocean and the atmosphere from an aircraft requires antennas with the same beamwidth at the various frequencies of operation. Scientists at the National Oceanic and Atmospheric Administration designed an offset antenna with a pressure-compensating corrugated feed horn to meet this criterion. A specially designed fairing was incorporated into the antenna to optimize the aerodynamics and minimize the liquid buildup on the antenna surfaces. The antenna has two positions: the zenith (up) position and the nadir (down) position. The planar near-field facility at the National Institute of Standards and Technology was used to determine the far-field pattern of the antenna. The results show that the antenna beamwidths at 23.87 and 31.65 GHz are nearly the same as expected from the design criterion. This antenna was recently used in an ocean remote-sending experiment and performed according to expectations.

Comparison of the holographic radiometric, and near-field surface error measurements of a 14-m radio telescope
J. Tuovinen,E. Lauria, M. Brewer, N.R. Erickson, P.F. Goldsmith, R. Grosslein, R. Snell, November 1994

The RMS surface error predicted by holographic measurements is often smaller that the one predicted by radiometric measurements. At the FCRAO, a difference of 40% was observed for the 14-millimeter radio telescope. To find the explanation for this discrepancy, simulations and additional near-field measurements were performed. The near-field measurements were carried out at 91.9 GHz on a part of the aperture of the telescope. This paper describes the near-field measurements and presents a careful comparison between the results from holographic, radiometric and near-field surface error measurements. This comparison and simulations revealed that the main reason for the discrepancy between the radiometric and h9olographic results was the smoothing of the holographic data. The smoothing has been used for reducing the effects of the truncated far-field data in the FFT process.

Spherical microwave holography, the movie
E.B. Joy,D.A. Leatherwood, M.G. Guler, November 1994

Microwave holography is an important technique for analyzing electromagnetic fields in close proximity to objects such as antennas or radomes. In this paper, data measured in the far-field and near-field are transformed to the surface of a spherical radome using spherical microwave holography. Further, the fields are calculated on a sequence of spheres concentric to the spherical radome to display the spatial distribution of the fields as a function of distance from the surface of the radome out to five wavelengths from the radome, a movie. This progression demonstrates the ability to locate radome surface defects is severely limited without the use of microwave holography. Three sets of radome defects are presented and range in size from three-eights of a wavelength to three wavelengths. This paper shows that near-field measurements alone are not generally capable of locating defects directly.

Low frequency operation, design, and limitations of the compact range reflector
S. Brumley, November 1994

Traditionally the Compact Range is not considered a viable method for conducting low frequency (VHF/UHF) antenna or RCS measurements because of the limited electrical size of the collimating reflector system. Normally, compact range measurements are conducted in the extreme near-field or the collimating system where to reflector size is on the order of 25 to 30 wavelengths minimum with at least four wavelength edge treatments. This mode of operation limits measurements to the high UHF band (800 MHz) and above for typical sized reflector systems in use today. Recent research with compact range3s indicates that acceptable VHF.UHF measurements can be conducted in the quasi far-field region of the collimating system with reflectors as small as five wavelengths and with electrically short edge treatments. A good user knowledge of this mode of operation is required to maximize its utility. A qualitative measure of acceptable quiet zone performance must also be established. This paper addresses the theory of operation, practical implementation and inherent limitations of the non-conventional use of the indoor compact range for conducting low frequency measurements.

Demonstration of test zone field compensation in an anechoic chamber far-field range
D.N. Black,D.A. Leatherwood, E.B. Joy, R.E. Wilson, November 1994

Test zone field (TZF) compensation increases antenna pattern measurement accuracy by compensating for non-plane wave TZFs. The TZF is measured over a spherical surface encompassing the test zone using a low gain probe. The measured TZF is used in the compensation of subsequent pattern measurements. TZF compensation is demonstrated using measurements taken in an anechoic chamber, far-field range. Extraneous fields produced by reflection and scattering of the range antenna field in the chamber causes the TZF to be non-planar. The effect of these extraneous fields on pattern measurements is shown. Measured TZFs are also shown. TZF compensation results for pattern measurements using a high-gain, X-band slotted waveguide array are presented.

Three antenna gain methods on a near field range
W.G. Scott,G. Masters, November 1994

The Three-Antenna gain method is commonly used on far-field ranges to determine an antenna's absolute gain. This is especially true when no other calibrated antenna is available. This method has been used for years by calibration laboratories such as NIST to calibrate probes and gain standards for far and near-field ranges. In some cases, the calibration is too costly or does not meet the schedule requirements of the near-field test range. An alternative is to calibrate the probe or gain standards directly on the near-field range. In this paper we present the results of a study done to show the accuracy of the Three-Antenna gain method when used on a near-field range. An extensive error analysis is presented validating the utility of this method.

Plane wave synthesis at Fresnel zone distances using a phase-tapered aperture
J.P. McKay, November 1994

It is shown that a phase-tapered aperture may be used to produce a uniform plane wave at Fresnel zone distances. This allows one to perform antenna/RCS measurements at reduced distances relative to a far-field range, but without the illuminator complexity and cost associated with a compact range. An asymptotic expression is obtained for the Fresnel field of a circular aperture field source distribution characterized by a large quadratic phase taper. The field is shown to be equivalent to that produced by a uniform ring source and central radiator, so that the design equations for the ring source and central radiator can be applied to plane wave synthesis using a circular phase-tapered aperture. The asymptotic expression for the field as compared with a numerical evaluation obtained using aperture integration. A simple implementation of a phase-tapered aperture using a radiating source which illuminates an aperture at a distance is presented. A quiet zone field extent which is approximately 70-80% of the source aperture extent is demonstrated.

Surface adjustment of modular mesh antenna using near field measurements
M. Shimizu, November 1994

The advantages of mesh antennas include good storability and low mass for large on-board antennas over 10M in diameter. Their weak point is that surface adjustment is necessary to attain high accurate surface. Surface adjustment traditionally involves the repeated measurement of surface node position with a theodolite system and subsequent cable adjustment. These steps take much time. This paper describes a surface adjustment scheme that uses near field measurement for a modular mesh antenna composed of mesh, cable network and supporting structure. The node positions of the antenna are obtained by back projection of the far field pattern generated from the near field pattern. The cable network has low sensitivity to changes in local node position. The results of tests show that the surface accuracy needed to achieve the required RF performance can be obtained quickly without theodolite systems.

Vertical antenna array applications on a ground-bounce instrumentation radar range
B.E. Fischer, November 1994

A vertical array of antennas is used to beamform the farfield used in the measurement of Radar Cross Section (RCS) on a ground-bounce radar range. By properly weighting (attenuating) and phasing (through line length adjustments) each antenna, a desired far-field pattern can be obtained. This paper discusses some benefits of the technique and outlines a basic mathematical approach. Implementation is considered, and wide band ramifications of a practical design are discussed. At RATSCAT, this basic understanding was used to examine a simple two element array. This paper preceded that study and was originally written just for that purpose.

Polarization extraction of circularly polarized antennas
F. Colomb,J. Gentle, J. Swanstrom, P. Klock, P. Mayes, November 1994

A technique is presented for obtaining the radiation patterns and the antenna gain of elliptically polarized antennas from two vector measurements of the far-field. The two measurements correspond to different polarizations which can be obtained by rotating one of the antennas around its boresight axis. The discussion emphasizes a particularly interesting case, for which accurate radiation patterns and gain of the antenna under test (AUT) can be obtained without prior knowledge of the polarization of the second antenna. The radiation pattern of a nearly circularly polarized (CP) antenna is conveniently represented by the CP co-polarized and cross-polarized components. The axial ratio and any other quantities commonly used to specify the antenna polarization can also be obtained since the pair of initial vector measurements completely characterize the polarization of the AUT. The technique is illustrated by measurements of a CP patch antenna.

Automated production test facility for a MMW radar system
W.S. Arceneaux, November 1994

Martin Marietta has developed a new, automated facility for high-volume production testing of the Longbow millimeter wave missile. Two dedicated far field anechoic chambers were designed, both automated to support component test and analysis in the production environment. One standard far field chamber is used to perform the complete characterization of the antenna and rac1orne; it allows very accurate measurements of power sidelobes, monopulse errors, and cross­ polarization isolation. The completed radar missile sensor group is evaluated in the second far field chamber, which can reach higher-level parameters of the antenna, transceiver, and gimbal. This paper describes chamber and test station capabilities; time reduction benefits; and the novel, new assembly technique which allows for future portability of these chambers with limited downtime.

Portable RCS diagnostic system
R. Harris,B. Freburger, D. Maffei, R. Redman, November 1993

This paper describes the most recent version of the Model 200 portable RCS diagnostic radar. The Model 200 was designed to provide high-resolution RCS measurements in unprepared rooms indoors as well as on outdoor ranges. The system can provide real aperture measurements, ISAR measurements, or SAR measurements without changing system configuration.

Ground-to-air RCS diagnostic system
R. Harris,A. Strasel, B. Freburger, C. Zappala, M. Lewis, R. Redman, November 1993

The initial phase of METRATEK's new Model 300 Radar System has been installed at the Navy's Chesapeake Tests Range (CTR) at Patuxent River, MD. This ground-to-air Multimode, Multifrequency Instrumentation Radar System (MMIRS) is a high-throughput frequency-and-polarization agile radar that is designed to drastically reduce the cost of measuring the radar cross section of airborne targets by allowing simultaneous measurements to be made at VHF through Ku Band.

High duty instrumentation radar transmitters
F.A. Miller, November 1993

Today's requirements for dynamic Radar Cross Section (RCS) test data set new demands upon instrumentation Radar systems. Transmitters must deliver high power and operate at high data rates. Additionally, noise floor reduction of coherent spurious signals improves raw data and minimizes the need for manipulation of data.

High speed antenna measurement systems for S.A.R. applications.
P. Garreau,G. Cottard, J. Ch. Bolomey, November 1993

Data collection for Synthetic Aperture Radar (SAR) antenna measurements is increasingly making measurement stages very time consuming. This paper presents the capabilities of fast Planar Near Field (PNF) instruments using a linear modulated probe array. It demonstrates the possibilities to decrease the classical near field mechanical scan time by a factor ranging from 100 to 1000. Emphasis is given to the advantages of this technique for multi parameter antenna measurements.

Dual-frequency,dual-polarized millimeter wave antenna characterization
J.P. Kenney,D. Mooradd, E. Martin, L.D. Poles, November 1993

The radiation characteristics for a dual-frequency, dual-polarized millimeter wave antenna for a radar operating at 33 and 95-GHz were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured using the 2600 foot far field range. In this paper we'll discuss the general design of the antenna feed system and the instrumentation ensemble used to perform the far field characterization of this high performance large aperture dielectric lens antenna.

Demonstration of bistatic electromagnetic scattering measurements by spherical near-field scanning, A
M.G. Cote,R.M. Wing, November 1993

The far-field radar cross section (RCS) of a conducting sphere is obtained by transforming scattered near-fields measured on a spherical surface. A simple and convenient calibration procedure is described that involves measuring the incident field directly at the target location. Although a non probe-corrected transmission formula was used in this study the importance of prove correction in practice is demonstrated.

Analytic spherical near field to near/far field transformation, An
T.K. Sarkar,A. Taaghol, P. Petre, R.F. Harrington, November 1993

An efficient and accurate spherical near field to far field transformation without probe correction is presented. The indices m of the Legendre polynomials is summed up analytically, thereby reducing the computation time. Computations with both synthetic and experimental data illustrate the accuracy of this technique.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30