Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
A.C. Newell (Newell Near-Field Consultants),J. Guerrieri (National Institute of Standards and Technology),
K. MacReynolds (National Institute of Standards and Technology), November 2002
This paper describes two methods that can be used to measure the leakage signals in quadrature detectors, predict the effect on the far-field pattern, and correct the measured data for leakage bias errors without additional near-field measurements. One method is an extension and addition to the work previously reported by Rousseau1. An alternative method will be discussed to determine the leakage signal by summing the near-field data at the edges of the scan rather than summing below a threshold level.
Examples for both broad-beam horns and narrowbeam antennas will be used to illustrate the techniques.
H-T Chen (Chinese Military Academy),H-D Chen (Cheng-Shiu Institute of Technology),
R-C Liu (Wavepro, Inc.),
T-Z Chang (Wavepro, Inc.), November 2002
The free-space VSWR technique, which involves scanning a field probe through the quiet zone area and plotting the amplitude and phase ripples over this region, is generally used for evaluating the performance of a farfield range. In this paper, this free-space VSWR technique is simulated by the finite-difference time-domain (FDTD) method to demonstrate the relationship between the ripple amplitude and the absorber reflectivity. The commercial package named “FIDELITYTM”, based on FDTD algorithm released by Zeland Software, Inc., is used for the simulations. The pyramidal absorbers on the walls of the far-field range are modeled by using effective layer model. That is, in the FIDELITYTM simulation setup, the absorbers are replaced with several homogeneous but uniaxially anisotropic layers. The amplitude ripples for both cases of 12-in-pyramid chamber and 18-in-pyramid chamber are presented and discussed.
H-T Chen (Chinese Military Academy),H-D Chen (Cheng-Shiu Institute of Technology),
R-C Liu (Wavepro, Inc.),
T-Z Chang (Wavepro, Inc.), November 2002
The free-space VSWR technique, which involves scanning a field probe through the quiet zone area and plotting the amplitude and phase ripples over this region, is generally used for evaluating the performance of a farfield range. In this paper, this free-space VSWR technique is simulated by the finite-difference time-domain (FDTD) method to demonstrate the relationship between the ripple amplitude and the absorber reflectivity. The commercial package named “FIDELITYTM”, based on FDTD algorithm released by Zeland Software, Inc., is used for the simulations. The pyramidal absorbers on the walls of the far-field range are modeled by using effective layer model. That is, in the FIDELITYTM simulation setup, the absorbers are replaced with several homogeneous but uniaxially anisotropic layers. The amplitude ripples for both cases of 12-in-pyramid chamber and 18-in-pyramid chamber are presented and discussed.
B. Schardt (NAVAIR Weapons Division),P. Liesman (NAVAIR Weapons Division),
R. Young (NAVAIR Weapons Division), November 2002
The bistatic radar signature of military systems is of interest for various applications including performance evaluation of semi-active missile systems, surveillance systems, and survivability assessment.
While bistatic radar cross section (RCS) measurements have been made for high frequencies at several U.S facilities, there has been little reported work in low frequency bistatic RCS measurements.
This paper presents the results of recent low frequency coherent bistatic RCS measurements from 210 MHz to 1.99 GHz at bistatic receiver angles of 0°, 35°, 70°, 120° and 145°. These measurements were successfully completed at the Naval Air Systems Command Weapons Division Etcheron Valley Range (EVR), formerly known as Junction Ranch (JR), China Lake, California This paper describes the process and provides results of low frequency bistatic RCS measurements on a hemisphere-capped cylinder target. Comparisons are presented of measured data to predicted results from moment method models of the calibration object and the cylinder target. Methodologies used in optimizing RCS data quality are also provided.
L.D. Poles (Air Force Research Laboratory),E. Martin (Air Force Research Laboratory),
E. Wisniewski (Air Force Research Laboratory),
J. Kenney (Air Force Research Laboratory),
R. Wing (Air Force Research Laboratory),
Ryan Thomas (Air Force Research Laboratory),
James Kenney (Air Force Research Laboratory), November 2002
Accurate UHF phased array antenna patterns are difficult to achieve due to high level multipath present in the far field measurement test range. Special range geometry’s and source arrangements have been devised over the years to mitigate the measurement errors produced by test range multipath. In this paper we will describe new measurement results achieved using Aperture Synthesis illumination method designed to optimize and control the influence of ground reflections and in turn reduce quietzone amplitude ripple. Measured phased array patterns at 418, 434, 449, and 464 MHz will be shown for a 64- element array.
M. Hirose (National Metrology Institute of Japan),J. Ichijoh (NEC TOKIN Corporation),
K. Komiyama (National Metrology Institute of Japan),
S. Torihata (NEC TOKIN Corporation), November 2002
We have measured the amplitude and the phase of the electric field on a planar area very near (about 0.3 wavelengths) to the aperture of a X-band standard gain horn antenna using a photonic sensor and transformed the aperture field distribution to the far field pattern.
The measured aperture field distributions and antenna patterns agreed well with those calculated by the method of moments. Comparing the far field patterns by the photonic sensor and the conventional open-ended rectangular waveguide probe reveals that the antenna measurement using the photonic sensor has advantages over the conventional probe.
Choosing the proper antenna range configuration is important in making accurate measurements and verifying antenna performance. This paper will describe the steps involved so the antenna engineer can select and specify the best antenna range configuration for a given antenna. It will describe the factors involved in choosing between near-field systems versus far-field systems, and the different scan types involved. It will explain the advantages of each type of antenna range and how the choices are affected by such factors as aperture size, frequency range, gain, beamwidth, polarization, field of view, sidelobe levels, and backlobe characterization desires. This paper will help the antenna engineer identify, understand, and evaluate the applicable characteristics and will help him in specifying the proper antenna range for testing the antenna.
C. Courtney (Voss Scientific),D. Voss (Voss Scientific),
L. LeDuc (Edwards Air Force Base),
R. Haupt (Utah State University), November 2002
The radiation properties of an antenna are defined in the far field, since this is the environment that they will operate. Creating far field conditions when testing a large aperture antenna is quite challenging. This is particularly true if testing occurs within the confines of an anechoic chamber, or if other complicating field characteristics (like angle-of-arrival simulation) are desired. Rather than attempt to generate a true planewave in the usual manner, we propose an instrument that creates a field distribution in the near field of a transmit array that is planewave-like in nature only over specified regions of interest (a region occupied by an antenna under test, for example); we do not require that the incident field be a true planewave at other locations. In these other locations the field is free to assume any value demanded by the governing equations of electromagnetics. By relaxing the requirement on the electromagnetic field in the test volume, we considerably reduce the complexity of the problem and define a tractable problem with a potential engineering solution.
W.L. Lippincott (Naval Research Laboratory),M. Smythers (Microstar Corporation),
T. Gutwein (Microstar Corporation),
Peter J. Souza (Blaise Engineering), November 2002
This paper presents a 'mid-range' calibration technique, now being developed for a 60 ft. diameter reflector site.
With this technique, near-field amplitude and phase is collected at a calibration tower as the reflector scans across it. The mid-range 'near-field' data is then transformed to a far-field pattern using a Fourier transform technique. Information on far-field EIRP, directivity, pointing, axial ratio and tilt, as well as encoder timing is obtained with accuracies comparable to standard measurement techniques. A particular advantage is that the system, once set-up, can be used on a regular basis without impacting site operations.
S.N. Pivnenko (Technical University of Denmark),J.M. Nielson (Technical University of Denmark),
O. Breinbjerg (Technical University of Denmark), November 2002
The need for a well-defined accuracy estimate in antenna measurements requires identification of all possible sources of inaccuracy and determination of their influence on the measured parameters. For anechoic chambers, one important source of inaccuracy is the reflection from the absorbers on walls, ceiling, and floor, which gives rise to so-called stray signals that interfere with the desired signal.
These stray signals are usually quantified in terms of the reflectivity level. For near-field measurements, the reflectivity level is not sufficient information for estimation of inaccuracy due to the stray signals since the near-to-far-field transformation of the measured near-field may essentially change their influence.
Moreover, the inaccuracies are very different for antennas of different directivity and with different level of sidelobes, and for different parts of the radiation pattern.
In this paper, the simulation results of a spherical near-field antenna measurement in an anechoic chamber are presented and discussed. The influence of the stray signals on the directivity at all levels of the radiation pattern is investigated for several levels of the chamber reflectivity and for different antennas.
The antennas are modeled by two-dimensional arrays of Huygens' sources that allow calculation of both the exact near-field and the exact far-field. The near-field with added stray signals is then transformed to the far-field and compared to the exact far-field. The copolar and cross-polar directivity patterns are compared at different levels down from the peak directivity.
We at MI Technologies have employed the Hansen error analysis [1] developed at the Technical University of Denmark (TUD), as a starting point for new system layouts. Here I expand it in two ways: the approach to mechanical errors, and the approach to system design.
I offer an alternative approach to the analysis of mechanical uncertainties. This alternative approach is based upon an earlier treatment of spherical coordinate positioning analysis for far-field ranges [2]. The result is an appropriate extension of the TUD uncertainty analysis.
Also, the TUD error analysis restricts its attention to three categories of errors: mechanical inaccuracies and receiver inaccuracies and truncation effects. An error analysis for a spherical measurement system should desirably contain entries equivalent to the 18-term NIST table for planar near-field [5]. In this paper, I offer such an extended tabulation for spherical measurements.
R. Wilson (Space Systems/Loral),W. Scott (Space Systems/Loral), November 2002
Calibrated probe complex pattern data is used in planar NFR (near field range) data processing to remove the effects of the probe on the measurement. In a prior paper [1] we proposed a procedure to estimate the measurement error (uncertainty) introduced into a near field antenna radiation pattern measurement due to test frequencies that do not coincide with available calibration frequencies of the range probe. Our prior paper resulted in a “19th term” which was added to the well known NIST NFR 18 Term Error Table used to evaluate the unavoidable uncertainty of far-field radiation patterns derived from a near field scan of a given AUT (antenna under test). A limitation of this procedure, pointed out in our prior paper, is that it was most accurate for a test frequency falling midway between two nearest neighbor probe calibration frequencies. The estimated uncertainty became overly pessimistic as the test frequency of interest moved closer to one of the neighboring calibrated frequencies.
The procedure is improved in the present paper by the inclusion of a new term that is a function of the test frequency and the two nearest neighbor probe calibration frequencies. Examples are shown of the use of the new procedure to obtain an improved estimate of this measurement uncertainty and to create the 19th term for use with the standard 18 Term Error Table.
I.J. LaHaie (Veridian Ann Arbor Research and Development Center),D.J. Infante (Veridian Ann Arbor Research and Development Center),
E.I. LeBaron (Veridian Ann Arbor Research and Development Center),
P.K. Rennich (Veridian Ann Arbor Research and Development Center), November 2002
In previous AMTA presentations, we developed and evaluated an image-based near field-to-far field transformation (IB NFFFT) algorithm for monostatic RCS measurements. We showed that the algorithm’s far field RCS pattern prediction performance was quite good for a variety of frequencies, near field measurement distances, and target geometries. In this paper, we quantify the statistical RCS prediction performance of the IB NFFFT using simulated data from a generalized point scatterer model and method of moments (MoM) code, both of which allow modeling of targets with single and multiple interactions. It is shown that the predicted RCS statistics remain quite accurate under conditions where the predicted far field patterns have significantly degraded due to multiple interactions and other effects.
G. Sanches (Advanced ElectroMagnetics, Inc.), November 2002
This paper will deal with basic rectangular chamber design and the choices that most affect the performance characteristics of a typical Rectangular Anechoic Chamber. The first and foremost criterion that needs to be addressed is “What is the chamber for”. The answer to this question is the primary driving factor regulating the overall chamber design.
Is the chamber to be used to evaluate low gain, low frequency antennas? Is the chamber going to be used for RCS measurements of unique test bodies? Is the chamber going to be used to test high gain high frequency antennas? Is the chamber going to be used for far field measurements? Is the chamber going to be used for near field measurements? On and on. The answers to these very basic questions have a dramatic effect on the overall design of the anechoic chamber.
Since there are so many preliminary criteria that have to be decided before we can even attempt a design I will make the following assumptions: 1) The chamber is to be a far field antenna measurement facility 2) The chamber is to operate from 2.0 Ghz to 18.0 Ghz 3) The chamber is to be of a rectangular design 4) The quiet zone is to be a 4’ diameter sphere 5) The range length is to be 20’ 6) The desired Quiet Zone performance is a. –30 dB @ 2.0 Ghz b. –40 dB @ 4.0 Ghz c. –50 dB @ 10.0 Ghz d. –50 dB @ 18.0 Ghz With these parameters we will first look at the effect that source antenna selection has on the chamber deign. The first design example will be with a low gain broadband antenna chosen as the source and the second case will be with a high gain antenna chosen as the source. This paper will detail the different design approaches that this choice has on the overall size and absorber placement in the chamber. These will have a dramatic effect on overall chamber size and cost.
P.R. Miller (National Physical Laboratory),A. Beardmore (National Physical Laboratory),
D.G. Gentle (National Physical Laboratory),
Edward Johnson (National Physical Laboratory),
P.D. Lovelock (National Physical Laboratory), November 2002
NPL has recently commissioned a new indoor test range. This test range has been designed to offer Extrapolation Gain Measurements, Far-Field Probe Calibrations, and eventually, a Spherical Near-Field Test Capability. This paper describes this new range and the results of the initial validation measurements.
It also compares the gains of a standard gain horn calibrated in NPL’s old Extrapolation Range with those from the new one.
An empirical study on Planar Near-Field Scan Plane Truncation applied to the measurement of a large phased array radar antenna saves test time per antenna.
Lockheed Martin has been manufacturing, aligning, and verifying the AEGIS SPY-1B/D phased array radar antenna for the past 17 yrs . A custom built planar nearfield scanner system (ANFAST II) was designed and built specifically for this purpose.
Existing raw near-field measured data sets were cropped in both the X and Y scan planes, processed to the far field, and compared with the un-truncated data to determine the error sensitivity vs near-field amplitude level truncated.
Near-field measurements were then acquired at the truncated scan plane dimensions and compared. It was demonstrated that 100 hrs of test time could be saved by applying this technique without adversely effecting the antenna measurement uncertainty.
This paper discusses the application of the truncation technique, results of the experiments, and practical limitations.
A.C. Newell (Nearfield Systems Inc.),B. Schluper (Nearfield Systems Inc.),
R.J. David (The Mitre Corp.), November 2001
Holographic back-projections of planar near-field measurements to a plane have been available for some time. It is also straightforward to produce a hologram from cylindrical measurements to another cylindrical surface and from spherical measurements to another spherical surface1-7. In many cases the AUT is approximately a planar structure and it is desirable to calculate the hologram on a planar surface from cylindrical or spherical near-field or far-field measurements. This paper will describe a recently developed spherical hologram calculation where the farfield pattern can be projected on any plane by specifying the normal to the plane. The resulting hologram shows details of the radiating antenna as well as the energy scattered from the supporting structure.
Since the hologram is derived from pattern data over a complete hemisphere, it generally shows more detail than holograms from planar measurements made at the same separation distance.
B. Fischer (AARDC),I.J. LaHaie (AARDC),
J. Fliss (AARDC), November 2001
This paper presents a first-principles algorithm for estimating a target’s far-field radar cross section (RCS) and/or far-field image from extreme near-field linear (1- D) or planar (2-D) SAR measurements, such as those collected for flight-line diagnostics of aircraft signatures.
Wavenumber migration (WM) is an approach that was first developed for the problem of geophysical imaging and was later applied to airborne SAR imagery [1], where it is often referred to as the “Range Migration Algorithm (RMA)”[2]. It is based on rigorous inversion of the integral equation used to model SAR/ISAR imagery, and is closely related to processing techniques for near-field antenna measurements. A derivation of WM and examples of approximate farfield RCS and image reconstructions are presented for the one-dimensional (1D) case, along with a discussion of the angular extent over which the far-field estimates are valid as a function of target size, measurement standoff distance, and near-field aperture dimensions.
A novel broadband dielectric rod probe design that has the characteristics of broad bandwidth; symmetric probe pattern; low RCS; low antenna clutter and dual polarization operation is discussed. The RCS level reduces the interaction between the probe and antenna under test (AUT). The lower antenna clutter level improves the sensitivity in detecting responses from wide angles with greater time delays. During the transmission mode, the rod is excited with a broadband microwave launcher from one end. The radiation then occurs at the other terminal of the rod. Measurement results of the far-field patterns, RCS and reflection coefficient for a prototype rod probe (DRP) are presented.
F. Jensen (TICRA),K. Pontoppidan (TICRA), November 2001
Two ways of modelling a compact range design are presented, and the coupling to a given antenna under test (AUT) is determined and compared to the AUT far field.
The compact range models are both based on physical optics (PO). The first model applies a simple presentation of the serrations of the range reflector while the second model is based on a new feature of GRASP8, which allows a detailed description of the triangles of the range serrations.
The AUT measurement is modelled by an accurate coupling analysis between the current elements on the compact range reflector and the antenna under test. This coupling pattern is compared to the real far-field pattern and the differences are discussed.
By including known range imperfections in the AUT-torange coupling a better agreement to the measured patterns may be obtained.
All computations are carried out by GRASP8.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.