Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
Modern day remote sensing spacecraft often feature multiple payloads sharing a common bus (spacecraft platform). RE02 emission testing (1, 2) characterizes the emission signature of a given payload in order to assess electromagnetic compatibility with respect to other payloads (i.e. “victims”) on the bus. Typically, a simple path loss model based on 1/r2 power variance (ref: Friis path loss equation) is used to account for the distance between the emitting and victim payloads using measured amplitudes taken during RE02 measurements. RE02 measurement technique (2) dictates that emissions testing take place at a fixed radial distance of one meter from the radiating instrument. At certain frequencies, however, this measurement takes place in the near field of the emitter. In general, power density amplitudes are greater in the near field than its far field counterpart. This paper investigates any potential error incurred by not accounting for this effect. A simple math model for a common mode radiator is developed to estimate this error and attempt to better understand the field relationships at lower frequencies where the near field predominates.
Bjorn Doring,Marco Schwerdt, Robert Bauer, November 2007
The Microwaves and Radar Institute regularly performs calibration campaigns for spaceborne synthetic aperture radar (SAR) systems, among which have been X-SAR, SRTM, and ASAR. Tight performance specifications for future spaceborne SAR systems like TerraSAR-X and TanDEM-X demand an absolute radiometric accuracy of better than 1 dB. The relative and absolute radiometric calibration of SAR systems depends on reference point targets (i. e. passive corner reflectors and active transponders), which are deployed on ground, with precisely known radar cross section (RCS). An outdoor far-field RCS measurement facility has been designed and an experimental test range has been implemented in Oberpfaffenhofen to precisely measure the RCS of reference targets used in future X-band SAR calibration campaigns. Special attention has been given to the fact that the active calibration targets should be measured under the most realistic conditions, i. e. utilizing chirp impulses (bandwidth up to 500 MHz, pulse duration of 2 µs for a 300 m test range). Tests have been performed to characterize the test range parameters. They include transmit/receive decoupling, background estimation, and two different amplitude calibrations: both direct (calibration with accurately known reference target) and indirect (based on the radar range equation and individual characteristics). Based on an uncertainty analysis, a good agreement between both methods could be found. In this paper, the design details of the RCS measurement facility and the characterizing tests including amplitude calibration will be presented.
Cecilia Cappellin,Aksel, Frandsen, Olav Breinbjerg, November 2007
A new antenna diagnostics technique has been developed for the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. The technique is based on the transformation of the Spherical Wave Expansion (SWE) of the radiated field, obtained from a spherical near-field measurement, to the Plane Wave Expansion (PWE), and it allows an accurate reconstruction of the field in the extreme near-field region of the antenna under test (AUT), including the aperture field. While the fundamental properties of the SWE-to-PWE transformation, as well as the influence of finite measurement accuracy, have been reported previously, we validate here the new antenna diagnostics technique through an experimental investigation of a commercially available offset reflector antenna, where a tilt of the feed and surface distortions are intentionally introduced. The effects of these errors will be detected in the antenna far-field pattern, and the accuracy and ability of the diagnostics technique to subsequently identify them will be investigated. Real measurement data will be employed for each test case.
Total Radiated Power (TRP) and Total Isotropic Sensitivity (TIS) are the two metrics most commonly used to characterize the over the air (OTA) performance of a handheld wireless device. The minimum range length for these measurements has usually been determined using the far-field criteria of R>2D2/.. Since the devices are relatively small (<30cm) and the frequencies relatively low (<2GHz), the range length required to meet the far-field criteria is less than 120 cm. However, wireless devices are being designed that operate at the higher frequencies of the IEEE 802.11 standards, and many of these devices are no longer small handheld devices but rather notebook computers, appliances or even vehicles. Applying the far-field criteria to testing such devices can generate requirements for large and expensive chambers. This paper demonstrates through both numerical simulations and actual measurements that accurate TRP and TIS measurements can be made at range lengths significantly shorter than those indicated by R>2D2/..
Comparisons of the far-field results from two different ranges are a useful complement to the detailed 18 term uncertainty analysis procedure. Such comparisons can verify that the individual estimates of uncertainty for each range are reliable or indicate whether they are either too conservative or too optimistic. Such a comparison has recently been completed using planar and spherical near-field ranges at Nearfield Systems Inc. The test antenna was a mechanically and electrically stable slotted waveguide array with relatively low side lobes and cross polarization and a gain of approximately 35 dBi. The accuracies of both ranges were improved by testing for, and where appropriate, applying small corrections to the measured data for some of the individual 18 terms. The corrections reduce, but do not eliminate the errors for the selected terms and do not change the basic near-to-far field transformations or probe correction processes. The corrections considered were for bias error leakage, multiple reflections, rotary joint variations and spherical range alignment. Room scattering for the spherical measurements was evaluated using the MARS processing developed by NSI. The final results showed a peak equivalent error signal level in the side lobe region of approximately -60 dB for both main and cross component patterns for angles of up to 80 degrees off-axis.
Comparisons of the far-field results from two different ranges are a useful complement to the detailed 18 term uncertainty analysis procedure. Such comparisons can verify that the individual estimates of uncertainty for each range are reliable or indicate whether they are either too conservative or too optimistic. Such a comparison has recently been completed using planar and spherical near-field ranges at Nearfield Systems Inc. The test antenna was a mechanically and electrically stable slotted waveguide array with relatively low side lobes and cross polarization and a gain of approximately 35 dBi. The accuracies of both ranges were improved by testing for, and where appropriate, applying small corrections to the measured data for some of the individual 18 terms. The corrections reduce, but do not eliminate the errors for the selected terms and do not change the basic near-to-far field transformations or probe correction processes. The corrections considered were for bias error leakage, multiple reflections, rotary joint variations and spherical range alignment. Room scattering for the spherical measurements was evaluated using the MARS processing developed by NSI. The final results showed a peak equivalent error signal level in the side lobe region of approximately -60 dB for both main and cross component patterns for angles of up to 80 degrees off-axis.
Scott A Goodman,Inder J. Gupta, PhD, November 2007
Now-a-days, far-field ranges are being used to measure antenna radiation patterns. Two main types of ranges used are used for these measurements: direct and indirect illumination. In either case, the accuracy of the measurement is dependent upon the quality of the range quiet-zone fields. In direct illumination, phase and amplitude taper cause discrepancies in the fields. For indirect illumination, only amplitude taper must be accounted for. Additionally, stray signals and cross-polarization will further distort the quiet-zone fields and lead to measurement errors. This new methodology starts with the measured antenna data and a priori knowledge of the incident fields and estimates an Effective Aperture Distribution (EAD). The EAD compensates for these sources of error and can be used to predict the far-field radiation pattern of the antenna under test. Analytical results are presented for taper and stray signal analysis.
Timothy Brockett,Yahya Rahmat-Samii, November 2007
As new antenna designs reach higher frequencies and smaller sizes, traditional large scale antenna chamber systems become ill-suited for measurement. External mixing, room-sized chambers, and expensive test equipment add large costs and burden to antenna measurement systems. A smaller, more cost effective system is proposed. Using the bipolar planar scanning technique developed at UCLA, a portable and movable millimeter-wave antenna chamber is currently under development. The chamber is being designed to fit on the end of a standard optical table and enjoys the space-saving and accuracy inherent to the bipolar planar configuration. Simple construction of the chamber will allow relatively easy assembly and disassembly and allow movement of the chamber from one table to another, if needed. Antenna of diameters up to 40cm can be accommodated and scan planes of up to ~160cm can be measured. Millimeter-wave frequencies from around 30GHz to 67GHz can be measured. Antennas measured will use planar near-field to far-field techniques. In particular, the post-process will follow the OSI/FFT method and will incorporate the phase retrieval techniques developed for the bipolar configuration. These phase-less measurements will allow the use of scalar millimeter-wave test equipment with much lower cost than comparable vector test equipment.
The polarization extraction in the phaseless near-field measurement is investigated. Sensing the antenna polarization based on the implementation of phase-retrieval methods like IFT (Iterative Fourier Technique) will not result to a unique solution. It is shown how a single extra point measurement can provide the complete vectorial representation of the field in a two-component representation. This means for the first time by the application of phaseless methods, one not only can get an understanding of the dominant polarization of the antenna in terms of linearity, ellipticity or circularity but also the true representation of the co- and cross polarized components in the far-field based on any definition (like Ludwig’s definitions). The applicability of the method is shown through a near-field measurement of a right-hand elliptically polarized antenna array in UCLA bi-polar near-field facility.
David A. Thompson,Robert Dybdal, Frank Pisano, November 2007
Conventional compact ranges use a reflector antenna’s near field to produce the plane wave illumination needed to measure a second antenna under test (AUT). The quasi-compact range described here uses a conventional reflector antenna at a greater range separation than conventional compact ranges, but still within the reflector’s near field. Its illumination allows the antenna evaluations at smaller range separations than the AUT’s far-field distance and allows modification of a current far-field range with a reflector range antenna to measure larger test articles than normally acceptable. This approach preserves many advantages of a standard compact range including reduced multipath and high measurement sensitivity that result from the collimated near field of the illuminating reflector antenna. Additionally, a conventional reflector antenna is used without requiring edge treatments. Experience with a four-foot prime focus parabola operating at 18 GHz illustrates this technique. The measured quiet zone fields compare favorably with calculated values using the GRASP codes. Likewise, measurements of a 20”-diameter offset reflector antenna compare favorably with GRASP results.
Antenna measurement data is collected over a surface as a function of position relative to the antenna. The data collection coordinate system directly affects how data is mapped to the surface: planar, cylindrical, spherical or other types. Far-field measurements are usually mapped or converted to spherical surfaces from which directivity, polarization and patterns are calculated and projected. Often the collected coordinate system is not the same as the final-mapped system, requiring special formulas for proper conversion. In addition, projecting this data in two and three-dimensional polar or rectangular plots presents other problems in interpreting data. This paper presents many of the most commonly encountered coordinate system formulas and shows how their mapping directly affects the interpretation of pattern and polarization data in an easily recognizable way.
Reflections in anechoic chambers can limit the performance and can often dominate all other error sources. NSI’s MARS technique (Mathematical Absorber Reflection Suppression) has been demonstrated to be a useful tool in the fight against unwanted reflections. MARS is a post-processing technique that involves analysis of the measured data and a special mode filtering process to suppress the undesirable scattered signals. The technique is a general technique that can be applied to any spherical near field or far-field range. It has also been applied to extend the useful frequency range of microwave absorber down to lower frequencies. This paper will show typical improvements in pattern performance, and will show results of the MARS technique using data measured on numerous antennas.
In this paper we present a direct optimization procedure which utilizes phase-less electric field data over arbitrary surfaces for the reconstruction of an equivalent magnetic current density that represents the radiating structure or an antenna under test. Once the equivalent magnetic current density is determined, the electric field at any point can be calculated. Numerical results using experimental data are presented to illustrate the applicability of this approach for non-planar near field to far field transformation as well as in antenna diagnostics.
In this paper we present a direct optimization procedure which utilizes phase-less electric field data over arbitrary surfaces for the reconstruction of an equivalent magnetic current density that represents the radiating structure or an antenna under test. Once the equivalent magnetic current density is determined, the electric field at any point can be calculated. Numerical results using experimental data are presented to illustrate the applicability of this approach for non-planar near field to far field transformation as well as in antenna diagnostics.
The Air Force Research Laboratory (AFRL), RF Technology Branch at the Rome Research Site, Rome NY provides a capability of far field antenna testing on full scale aircraft. A computer program, APATS – Antenna Pattern Analytical Tool Set, was developed in conjunction with the Information Systems Research Branch to provide a better way to visualize and understand the antenna pattern data taken during testing. The program is written in Java and relies on JView, developed by the Information Systems Research Branch, to process and display the 3D, three-dimensional, elements of the program.
The CTIA (The Wireless Association – www.ctia.org) were the first to publish a widely accepted test plan for antenna performance testing of “live” mobile phones[1]. The test plan describes the use of phantom heads and involves recording transmitted power and receiver sensitivity information over a full sphere to derive parameters such as Total Radiated Power (TRP) and Total Integrated Sensitivity (TIS). The test plan, has until now, assumed that testing is performed in the far-field at test distances greater than 2D2/.. For typical mobile phone frequency and device test diameters (assumed 300mm in the CTIA test plan), this has not been a constraint. However, as such testing evolves to include the various versions of IEEE 802.11 combined with new devices such as larger laptops and other consumer electronics, a far-field test requirement would lead to very large test facilities. Using experiments and rigorous simulations, this paper will show that for the commonly accepted performance criteria, the far-field requirement is unnecessarily strict. A minimum distance requirement based on the geometry and probe pattern is proposed which will ensure that the performance parameters (TRP, TIS, and others) are obtained with insignificant loss of accuracy.
In this paper we have revisited the phase retrieval problem for planar near-field antenna measurements. It will be shown that the complexity of retrieval procedures is function of not only the independency of different sets of measurements but also the characteristics of the antenna under test (AUT). Features of antenna like its beam direction will have profound effect on the success of phase reconstruction algorithms. The failure of a well known phase retrieval method, Iterative Fourier Transform (IFT), is investigated for a case where the antenna has a scanned beam. It is found that this is due to the non-judiciary choice of the initial guess. To alleviate the deficiency of the IFT a simple but effective initial guess is sought by Differential Evolutionary Algorithm (DEA). DEA tries to find the best initial phase guess which minimizes an error criterion. Subsequently this best guess will be fed to the phase retrieval IFT routine for further phase refinements. Having done this the far-field can subsequently be constructed. The improvement in the phase reconstruction algorithm is examined, through a series of simulations and measurements.
In this paper a circular planar near-field scan region is considered as an alternative to the commonly used rectangular boundary. It is shown how the selection of this alternative boundary can reduce test time and also to what extent the alternative truncation boundary will affect far-field accuracy. It is also shown how well known single dimensional filter functions can be applied over a two-dimensional region of test and how these attenuate the truncation effect. The boundary and filter functions are applied to measured data sets, acquisition time reduction is demonstrated and the impact on far-field radiation pattern integrity in assessed.
DSO National Laboratories has commissioned a high performance combined near-field and far-field antenna test facility in 2004. This facility supports highly accurate measurement of a wide range of antenna types over 1 – 18 GHz. This combined NF-FF system allows for planar, cylindrical and spherical near-field measurements, as well as far-field measurements. The combined near-field and far-field test facility has undergone meticulous validations making use of a TICRA calibrated “Golden Antenna” (GA). A detailed account of the cylindrical and spherical near-field comparative validation methodology and the test results are the subject of this article. The validation results for planar near-field (PNF), cylindrical near-field (CNF), spherical near-field (SNF) and far-field measurements have clearly shown that the system fulfils all the performance requirements without the use of a calibrated probe. Although dedicated near-field test facilities are generally thought to provide superior measurement accuracies, it will be shown in this article that a well-designed combined NF-FF test facility can deliver highly accurate results without the use of a calibrated probe. This makes the combined NF-FF system a viable and cost-effective antenna measurement solution, without compromising on measurement accuracies.
F. D'Agostino,C. Gennarelli, C. Rizzo, C. Savarese, F. Ferrara, R. Guerriero, November 2006
ABSTRACT An elaborate and effective strategy for estimating the samples external to the measurement region in the planar spiral scanning is developed in this paper. It relies on the nonredundant sampling representations of the electromagnetic field and on the optimal sampling interpolation expansions of central type and uses the singular value decomposition method for extrapolating the outside samples. It is so possible to reduce the inevitable truncation error affecting the near-field reconstruction, thus giving rise to a more accurate far-field prediction. Numerical examples assess the effectiveness of the proposed technique.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.