Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
E.B. Joy (Georgia Institute of Technology),R.E. Wilson (Georgia Institute of Technology), November 1982
This paper presents the results of research conducted to compensate near field measurements for known errors in near field probe position. The complete solution for probe position error compensation and associated computer algorithm developed by Corey as a Ph.D. dissertation resulted in a large computer memory and computation time requirements. Corey’s results showed, however, that the prime effect of probe positioning error was a change in the near field measurement phase in the direction of main beam propagation. It was also shown that the sinusoidal components of the probe position error produced spurious sideband propagation directions in the calculated far field patterns. This information has been used to develop a simplified probe position error compensation technique which requires negligible computer storage and computation time. An early version of this technique has recently been implemented at RCA for the Aegis near field measurement facility. The technique and sample results are presented for a small probe position errors and for a low sidelobe level antenna measurement.
J.H. Davis (University of Texas at Austin), November 1982
An instrument has been built which allows the electromagnetic measurement of the surface accuracy of a large millimeter-wavelength antenna. The University of Texas 4.9 m radio telescope has been measured with this technique at 86.1 GHz to an accuracy of 4 µm at the surface.
Our technique is an interferometric one which is fast, accurate, and able to measure the whole antenna surface at once. While the technique is illustrated by its use on a large antenna, it could be used in a near field measurement of a smaller antenna.
Several antenna surface maps are presented. A comparison of run-to-run repeatability was made. The technique itself was tested by deforming the antenna surface in a known way and subsequently detecting the deformation.
In addition, important factors which influence the overall error budget have been identified. These include errors in setting the antenna angular position and fluctuation noise in the atmosphere and electronics.
An instrument has been built which allows the electromagnetic measurement of the surface accuracy of a large millimeter-wavelength antenna. The University of Texas 4.9 m radio telescope has been measured with this technique at 86.1 GHz to an accuracy of 4 µm at the surface.
Our technique is an interferometric one which is fast, accurate, and able to measure the whole antenna surface at once. While the technique is illustrated by its use on a large antenna, it could be used in a near field measurement of a smaller antenna.
Several antenna surface maps are presented. A comparison of run-to-run repeatability was made. The technique itself was tested by deforming the antenna surface in a known way and subsequently detecting the deformation.
In addition, important factors which influence the overall error budget have been identified. These include errors in setting the antenna angular position and fluctuation noise in the atmosphere and electronics.
V.J. Vokurka (Eindhoven University of Technology), November 1981
Compact Antenna Ranges (C.R.) proved to suitable for indoor measurements of antennas of moderate size (up to about 4 feet) in the frequency ranges from 4-18 GHz. Where less accurate measurements are allowed, the upper frequency limit can be as high as 60 GHz in current C.R. design. Dimensions of such a range are approximately 4 times larger (in linear dimension) than those of the test antenna. This is due to the face that there is a considerable taper in the amplitude over the aperture of the C.R.
Considerable improvements in the electrical performance may be expected for ranges in which two crossed parabolic cylindrical reflectors are used. Due to the increased focal length the uniformity of the amplitude distribution across the final aperture is increased considerably compared to conventional design. Furthermore, an asymmetrical plane-wave zone can be created which makes it possible to measure the patterns of asymmetrical antennas or devices including the direct environment (antennas on aircraft or spacecraft). A compact range which consists of a main reflector with overall dimensions of 2x2 metres has been used for experimental investigation in the 8-70 GHz frequency band. At 10 GHz the plane-wave zone has a slightly elliptical shape (100x90cm). The amplitude variations are in this case less than 0.3dB; the corresponding phase errors are less than 4 degrees. It has been shown that the reflectivity level can be kept below –60dB. Only a minor degradation in performance was found at 70 GHz. In conclusion, the performance of this new compact range is as good as, or better than that of most outdoor ranges. The upper frequency limit is about 100 GHz for ranges of moderate size (up to 3 metres).
Summarizing, the main advantages compared to other compact ranges are: -Larger test zone area (up to 2x) for the same C.R. reflector size -better crosspolar performance -considerably higher upper frequency limit The last-named is due to the cylindrical reflector surfaces, which are easier and cheaper to manufacture than double-curved surfaces.
This paper describes a new, automated, microprocessor controlled, dual-channel microwave vector ratio measurement receiver for the frequency range 10 MHz to 18 GHz. It provides a greater than 120 dB dynamic range and resolutions of 0.001 dB and 0.1 degree. Primarily designed as an attenuator and Signal Generator Calibrator, it offers solutions to antenna measurement problems where high accuracies and/or wide dynamic measurement ranges are required such as for broadband cross-polarization measurements on radar tracking antennas, highly accurate gain measurements on low-loss reflector antennas, frequency domain characteristics measurements on wide-band antennas with resulting data suitable for on-line computer conversion to time domain transient response and dispersion characteristics data and wideband near field scanning measurements for computing far field performances. The measurement data in the instrument is obtained in digital form and available over an IEEE-488 bus interface to an outside computer. Measurement times are automatically optimized by the built-in microprocessor with respect to signal/noise ratio errors in response to the measurement signal level and the chosen resolution. Complete digital measurement data amplitude of both channels and phase, is updated every 5 milliseconds.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.