AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Pattern

Digital Antenna Data Collecting System for MIL-A-87136 Testing
J. Detwiler, November 1979

The Defense Electronic Supply Center in Dayton, Ohio has recently issued a specification, MIL-A-87136, for testing Airborne Antennas. This specification covers all aspects of testing antennas including a section dealing specifically with radiation pattern tests. Further, this specification defines the data format to be used when antenna pattern measurement data is required to be furnished on magnetic tape. Scientific-Atlanta’s Series 2030 Antenna Data Collection System’s magnetic tape format and test instrumentation meets the requirements set forth in MIL-A-87136. The system is a complete instrumentation/firmware package designed and programmed to perform commonly made antenna pattern measurements. After initial operator set-up, measurements can be made automatically at frequencies in the 1-18 GHz range. The test results are digitally recorded on magnetic tape and may be displayed as radiation distribution plots, data listings, or as conventional data patterns. The presentation describes the Antenna Data Collection System, its application to automatic antenna testing and to the requirements of MIL-A-87136. Features of the Data Collection System are included, as well as advantages of automatic measurement and digital recording of antenna data.

E-2C APS-125 Radar In-Flight Antenna Measurement Techniques
J. Seale (Naval Air Test Center),D. DeCarlo (Naval Air Test Center), November 1979

The E-2C Hawkeye aircraft is a carrier based airborne early warning sensor platform. The primary sensor is the APS-125 radar which is operated in the 400 to 446 MHz frequency range and utilizes a 10-element, Yagi end-fired array antenna integrated into a rotating, 2,400 pound rotodome mounted on top of the E-2C aircraft. As is the case for most airborne antennas, the performance in free space when the antenna is off the aircraft can be readily measured on a ground antenna range, but the accurate measurement of the antenna’s performance under actual flight conditions presented project engineers with a unique problem: Pattern interaction between the rotating rotodome and the aircraft fuselage and turning propellers could not be evaluated using existing ground range facilities. The proposed improvements to these facilities to accomplish this task were estimated to cost in excess of five million dollars.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31