Welcome to the AMTA paper archive. Select a category, publication date or search by author.
(Note: Papers will always be listed by categories. To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)
The objective of this study is to evaluate the measurement errors of a near-field range at in order to develop some techniques to minimize them. Measurements were performed on a standard gain horn as references. The methodology presented demonstrates that it is feasible to calculate the far-field radiation from near-field measurement with one deconvolution that will include all the errors introduced by the instrumentation
The Plume Measurement Facility is a new outdoor facility providing the capability to characterize tactical rocket motor plumes. Radar cross section of the plume is measured by both a near field and a far field radar. Infrared/ultraviolet/visible (IR/UVNIS) charac teristics are measured by numerous instruments recording spacial, temporal, and spectral data. All instrumentation is calibrated and adjusted to realtime standard day meteorological data and all data is recorded on a common synchronized time base.
NSI recently delivered a Turnkey Near-field Antenna Measurement System (TNAMS) to the Naval Surface Warfare Center - Crane Division (NSWC-CD) in Crane Indiana. The system supports characterization and calibration of the Navy's active array antennas. TNAMS includes a precision 12' x 9' vertical planar near-field robotic scanner with laser optical position measurement system, dual source microwave instrumentation for multiple frequency acquisition, and a wide PRF range pulse mode capability. TNAMS is part of the Active Array Measurement Test Bed (AAMTB) which supports testing of high power active arrays including synchronization with the Navy's Active Array Measurement Test Vehicle (AAMTV), now under development. The paper summarizes the hardware configuration and unique features of the pulse mode capability for high power phased array testing and the TNAMS interface to the AAMTV and AAMTB computers. In addition, range test data comparing antenna patterns with various pulse characteristics is presented.
Antenna designs continue to evolve and change as the telecommunications market expands, and current trends are towards more complex and higher performance antennas. In particular active transmit/receive (T/R) modules have enabled manufacturers to build antennas with multiple beams and significantly improved performance. These antennas present challenges for performance verification and testing not previously encountered in continuous wave (CW) antenna measurements. For example, testing in a pulsed operating mode, multiple beam state testing and testing in high power transmit and low power receive modes.
This paper examines pulsed antenna measurements and considerations for the range design. An instrumentation configuration is presented for a pulsed far-field antenna range.
Instrumentation Radar systems evolution includes improved stability. Metrologists know frequency within Hertz. Amplitude and Phase variations are low. Ranges check drift with reference systems. Still, with increased capability, expectations of accuracy have increased.
Todays instrumentation makes analysis of stability factors practical. This study analyzes Radar Cross Section (RCS) return of a stable target under controlled conditions.
Methodology will be an analysis of a constant RCS target return. The target is a stable object at a typical measurement site. Data points are at several discrete frequencies in bands between S and Ku. This study sample is a set of data taken over a 87 hour span with several duty factors. Duty factors will range from minimal 0.1% to 1.5%, near the 2% maximum for the output amplifiers. Acquisition times for data sets are chosen for outdoor temperatures ranging from hot -- desert afternoon -- through cool in the early morning.
This data will be analyzed statistically. If statistical correlations exist, analysis will quantify factor contributions with multiple linear regression. Hypothesis: Drift does not correlate to variables such as duty factor, & temperature.
D.R. Frey,A. Charland, J.R. Aubin, R. Flam, November 1997
ORBIT/FR has recently delivered an integrated facility capable of being used for Antenna, Radar Cross Section (RCS), and EMI measurements to the Naval Underwater Warfare Center in Newport, RI. The facility includes a shielded anechoic chamber, a compact range system capable of producing a 6 foot diameter quiet zone, multi-axis positioning equipment, and a complete complement of Antenna, RCS, and EMI measurement instrumentation and data collection hardware/software. The facility is capable of operation over a frequency range of 100 MHz to 50 GHz, with compact range operation feasible above 2 GHz.
The facility can be reconfigured to go between antenna and RCS measurements in any band using both frequency band and antenna/RCS mode switching. In addition, automatic positioning of the appropriate compact range feed to the reflector focal point is available. EMI measurements require minimal relocation of absorber in an isolated area of the chamber floor. Performance of the system is optimized by location of critical RF equipment on the compact range feed carousel or on the positioning system rail carriage. This system offers a unique combination of performance and convenience for making all three types of measurements.
R.B. Dybdal (The Aerospace Corporation), November 1996
Antennas that are integrated with system electronics extend the measurement scope of conventional, passive antenna designs. At a minimum, the dynamic range of the antenna system as limited by the electronics must be established. Array antennas with active electronics pose additional challenges because unit to unit variations in the array element electronics affect array performance. Other challenges are presented when digital electronics are incorporated into the antenna. Measurement techniques and instrumentation issues are discussed.
W. Parnell (TASC),Darrin Lyon (TASC)
John Seybold (TASC)
Steven Bishop (Air Force Development Test Center), November 1996
Millimeter Wave (MMW) Radar Cross Section (RCS) measurements of full scale ground vehicles are used to develop and validate scattering models for smart weapons applications (target detection, discrimination and classification algorithms) and Hardware-in-the-Loop (HITL) missile simulations. This paper describes a series of MMW RCS measurements performed at Range C-52, Eglin AFB FL on a T-72M in a field environment using an exiting instrumentation radar (with slight modifications to allow for accurate height adjustment) and in-scene phase reference. The test methodology, instrumentation systems, 3-D Imaging Algorithm and sample data sets at 35 and 95 GHz will be presented as well as a detailed sensitivity analysis and discussion of error effects.
D. Fleisch (Aeroflex Lintek Corp.),A. Moghaddar (Aeroflex Lintek Corp.), November 1996
Dynamic ground-to-air measurement of aircraft RCS has several advantages over static measurements. The target may be measured in flight configuration and the support pylon is eliminated. Although dynamic RCS imagery has been performed since the late 1970s, the cost and complexity of such measurements have limited their utility for routine testing.
In this paper, an easily deployable ground-to-air radar imaging system developed by Aeroflex Lintek is presented. This system forms images of aircraft in straight flight, requiring no on-board instrumentation or special pilot training.
The radar system, flight profiles, and processing tools required for generating images of aircraft in flight are presented, along with examples of measured target data.
A cost-effective, versatile instrumentation system for measuring antennas and radomes is described. The system features the use of high load capacity, high accuracy stepper motor based positioners as the primary system axes. The system is capable of being easily reconfigured to perform tests on antenna/radome systems with antennas fixed relative to the radome, or with the antenna and radome capable of movement relative to one another. Measurements may be performed at RF, IF or baseband, depending on the portions of the seeker or monopulse assembly to be included in the test. The system also contains analysis capabilities that simulated mode forming and beam forming functions to isolate antenna effects.
At high frequencies, the scattered fields from a radar target can be modeled as a sum of contri butions from a finite number of scattering centers. We use a parametric model based on the Geometric Theory of Diffraction (GTD) to estimate the location and type of scattering centers present in a frequency domain data set. The parameters of the model are estimated using a modified MUSIC algorithm that incorporates the GTD model. A new spatial smoothing algorithm is also introduced.
The amplitude of a point target observed in an ISAR image is equal to their free space RCS when effective sidelobe windowing is used. Likewise, its location in the image is identical to its actual location. The interpretation of observed amplitude and dimension of area targets is not as easy. The ISAR image of a rectangular flat plate formed by rotating it around its longer axis is significantly different from an ISAR image of the same plate rotated about its shorter axis. Both the amplitude and the size of the plate's image are different. In this paper, the theory of physical optics is reviewed in conjunction with the principles of ISAR processing to explain these differences.
Coherent background subtraction is an established method of reducing additive range clutter in radar cross section measurements. In some measurement situations, it is neither practical nor convenient to directly make a coherent measurement of the range background. The Environmental Research Institute of Michigan has devel oped two methods of synthesizing background measure ments for the coherent subtraction of additive clutter in these cases. The first method synthesizes a background for measurements of pylon-supported targets by remov ing unterminated pylon returns using software gating. The second method improves background subtraction by compensating for phase drift between target and back ground measurements. In this paper, these methods of improving the performance and utility of background subtraction will be described and demonstrated on mea sured data.
L. Cech,C. Clarke, G. Fliss, J. Steinbacher, T. Coveyou, T. Kornbau, W. Nagy, November 1995
Due to inherent cost, safety and logistical advan tages over dynamic measurements, Ground-to-Ground (G2G, aircraft and radar on tarmac) diagnostic radar measurements may be the preferred method of assessing aircraft RCS for signature maintenance. However, some challenging complications can occur when interpreting SAR imagery from these systems. For example, the effect of ground induced multi-path often results in the measurement of a significantly different image based RCS than would have been obtained by a comparable Ground-to-Air (G2A) or Air-to-Air (A2A) system. Although conventional 2-D SAR images are useful in determining the physical source (down-range/cross range) of scatterers, it is difficult at best to deduce whether an image pixel is a result of direct (desired) or ground induced multi-path (undesired) scattering.
ERIM and MRC recently completed an experiment testing the utility of collecting and processing interfero metric (2-antenna) SAR radar data. This effort produced not only high resolution SAR imagery, but also a com panion data set, derived from interferometric phase, which helps to isolate the source (direct or multi-path) of all scattering within the SAR image. Additionally, the data set gives a measure of the physical height of direct scatterers on the target.
This paper outlines the experiment performed on a RCS enhanced F-4 aircraft using a van mounted radar. Conventional high resolution imagery (down-range/ cross-range/intensity) will be shown along with down range/height/intensity and cross-range/height/intensity images. The paper will also describe the processing pro cedure and present analysis on the interferometric results. The unique motion compensation processing technique combining prominent point and motion mea surement instrumentation data, eliminates the need for a tightly controlled collection path (e.g. bulky rail sys tems). This allows data to be collected with the van driven somewhat arbitrarily around the target with side mounted antennas taking measurements at desired aspects.
Target support interaction terms often drive Radar Cross Section Measurement limitations. These limitations are when mask needed information, or render interpretation difficult. Although support improvement is desirable and studied, there is a fundamental problem. Perhaps we can create a support that is 10 dB better than existing supports. The technology producing that improvement will usually be applicable to targets. Result: The same ratios recur.
Modern instrumentation Radar possesses many acquisition agility's. Processing power currently available permits handling huge volumes of data. This paper studies evaluation and/or elimination of interaction terms using these agility's. Interactions within the test article are often significant. Controlled of this method would select and retain, or remove the terms.
D.J. Janse van Rensburg,G. Seguin, S. Mishra, November 1995
A technique for estimating measurement errors in near field facilities is presented. Known mechanical and electrical errors can be accounted for in simulation and such results are presented here. Unknown factors like chamber reflection and instrumentation drift can be estimated via selective measurement and the error induced by such anomalies may be combined with the simulated findings to provide error patterns for a particular test antenna and facility. Results are shown where these patterns are used to calculate measurement error limits. The software presented here also allows the generation of parametric curves which show the impact of a parameter of interest.
J.A. Scheer,D. Fleisch, R.J. Papieck, T.A. Lane, T.F. Schmitthenner, November 1995
Instrumentation grade, coherent, bistatic, radar cross section (RCS) measurement systems require a reliable low-noise method to link the reference, local oscillator (LO) and intermediate frequency (IF) coherent signals between the transmit and receive subsystems. One approach to this is the use of a fiber optic link (FOL). Phase noise measurements have been performed on a distributed feedback (DFB) type laser transmitter-photodiode receiver link with a delay of up to 2.26 kilometers, operating at 5 GHz, using a standard HP 3048A phase noise test measurement setup. System level tests have been performed, incorporating a FOL into a coherent bistatic instrumentation radar system local oscillator path, and performing image processing on an emulated target A first level analysis was conducted regarding the effects of the thermal noise on the radar perfonnance.
C.R. Birtcher,C.A. Balanis, J. Peng, P.A. Tirkas, W.V. Andrew, November 1995
Finite-Difference Time-Domain (FDTD) is prov ing to be a practical and accurate technique for an alyzing and predicting the performance of anten nas mounted on complex structures. As part of an effort to develop and validate an FDTD code, the impedance and radiation patterns of helicopter mounted loop antennas are predicted and compared to full-scale and 1:10 scale measurements.
The input impedance and coupling of HF loop an tennas on the scale model helicopter are measured in the ElectroMagnetic Anechoic Chamber facility at Arizona State University. Although made difficult by the large mismatch between the highly reactive HF antennas and the instrumentation, the scaled impedance measurements agree well with the full scale measurements and predictions. In addition, ro tor blade modulation effects on the input impedance are examined.
The radiation characteristics for an active phased array receive antenna operating at K Band were measured at the Ipswich Research Facility. On-pole and cross-pole radiation patterns were measured for several scan angles. In this paper we'll discuss the general design of the antenna and the instrumentation ensemble used to perform the far field and near field characterization of this antenna. Measurements taken on a 2600 foot far field range vs. a near field planer scanner are compared.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. To learn more, click here.