AMTA Paper Archive


Welcome to the AMTA paper archive. Select a category, publication date or search by author.

(Note: Papers will always be listed by categories.  To see ALL of the papers meeting your search criteria select the "AMTA Paper Archive" category after performing your search.)


Search AMTA Paper Archive
    
    




Sort By:  Date Added   Publication Date   Title   Author

Absorber

Design and Realization of A Small Compact Antenna Test Range at Low Frequency
Zhiping Li,Jianhua Wu, Ding Xu, Guofeng Zhou, Jingcheng Zhao, Guoyu He, November 2015

For a compact antenna test range (CATR) there exists a low frequency limit as to difficultly achieve an acceptable planar characteristic of the field in the test zone. In this paper some techniques are recommended to improve the low frequency performance, including in the serration ratio, the location of the quiet zone and the focal ratio. And the mirror reflection bouncing from the ground usually disturbs the quiet zone especially at the low frequencies, which can be reduced by the optimized layout of the absorber. As a successful example, a dimension of 5.5 m ´ 5.5 m parabolic reflector (about 16 wave lengths at 0.9 GHz) is designed and manufactured in the year of 2012. The quiet-zone quality is measured to verify the consideration for the optimized design process. The measured maximum peak-to-peak variations are 1.3 dB (amplitude) and 10.4° (phase) over the 2.0 m quiet zone at 0.9 GHz.

A Reduced Uncertainty Method for Gain over Temperature Measurements in an Anechoic Chamber
Vince Rodriguez,Charles Osborne, November 2015

Gain over Temperature (G/T) is an antenna parameter of importance in both satellite communications and radio-astronomy. Methods to measure G/T are discussed in the literature [1-3]. These methodologies usually call for measurements outdoors where the antenna under test (AUT) is pointed to the “empty” sky to get a “cold” noise temperature measurement; as required by the Y-factor measurement approach [4]. In reference [5], Kolesnikoff et al. present a method for measuring G/T in an anechoic chamber. In this approach the chamber has to be maintained at 290 kelvin to achieve the “cold” reference temperature. In this paper, a new method is presented intended for the characterization of lower gain antennas, such as active elements of arrays. The new method does not require a cold temperature reference thus alleviating the need for testing outside or maintaining a cold reference temperature in a chamber. The new method uses two separate “hot” sources. The two hot sources are created by using two separate noise diode sources of known excess noise ratios (ENR) or by one source and a known attenuation. The key is that the sources differ by a known amount. In a conventional Y-factor measurement [4], when the noise source is turned off, the noise power is simply the output attenuator acting as a 50 ohm termination for the rest of the receive system.  But by using two known noise sources, the lower noise temperature source takes the place of T-cold in the Y-factor equations. The added noise becomes the difference in ENR values. An advantage of this approach is that it allows all the ambient absorber thermal noise temperature change effects to be small factors thus reducing one of the sources of uncertainty in the measurement. This paper provides simulation data to get an approximation of the signal loss from the probe to the antenna under test (AUT). Another critical part of the method is to correctly define the reference plane for the measurement. Preliminary measurements are presented to validate the approach for a known amplifier attached to an open ended waveguide (OEWG) probe which is used as the AUT. [1] Kraus J.  Antennas 2nd ed.1988 McGraw-Hill: Boston, Massachusetts. [2] Kraus J.  Radio Astronomy Cygnus-Quasar Books 1986. [3] Dybdal R. B. “G/T Comparative Measurements” 30th Annual Antenna Measurement Techniques Association Annual Symposium (AMTA 2008), Boston, Massachusetts, November 2008. [4] “Noise Figure Measurement Accuracy – The Y-Factor Method”, Agilent Technologies, Application Note AN57-2. [5]  Kolesnikoff, P. Pauley, R. and Albers, L “G/T Measurements in an Anechoic Chamber” 34th Annual Antenna Measurement Techniques Association Annual Symposium (AMTA 2012), Bellevue, Washington Oct 2012. Keywords: Gain over Temperature (G/T), Satellite Communication, Radio Astronomy, Noise Figure Measurement

Spherical Geometry Selection Used for Error Evaluation
Greg Hindman,Patrick Pelland, Greg Masters, November 2015

ABSTRACT Spherical near-field error analysis is extremely useful in allowing engineers to attain high confidence in antenna measurement results. NSI has authored numerous papers on automated error analysis and spherical geometry choice related to near field measurement results. Prior work primarily relied on comparison of processed results from two different spherical geometries: Theta-Phi (0 =?= 180, -180 = f = 180) and Azimuth-Phi (-180 =?= 180, 0 = f = 180). Both datasets place the probe at appropriate points about the antenna to measure two different full spheres of data; however probe-to-antenna orientation differs in the two cases. In particular, geometry relative to chamber walls is different and can be used to provide insight into scattering and its reduction.  When a single measurement is made which allows both axes to rotate by 360 degrees both spheres are acquired in the same measurement (redundant). They can then be extracted separately in post-processing. In actual fact, once a redundant measurement is made, there are not just two different full spheres that can be extracted, but a continuum of different (though overlapping) spherical datasets that can be derived from the single measurement. For example, if the spherical sample density in Phi is 5 degrees, one can select 72 different full sphere datasets by shifting the start of the dataset in increments of 5 degrees and extracting the corresponding single-sphere subset. These spherical subsets can then be processed and compared to help evaluate system errors by observing the variation in gain, sidelobe, cross pol, etc. with the different subset selections. This paper will show the usefulness of this technique along with a number of real world examples in spherical near field chambers. Inspection of the results can be instructive in some cases to allow selection of the appropriate spherical subset that gives the best antenna pattern accuracy while avoiding the corrupting influence of certain chamber artifacts like lights, doors, positioner supports, etc. Keywords: Spherical Near-Field, Reflection Suppression, Scattering, MARS. REFERENCES Newell, A.C., "The effect of measurement geometry on alignment errors in spherical near-field measurements", AMTA 21st Annual Meeting & Symposium, Monterey, California, Oct. 1999. G. Hindman, A. Newell, “Spherical Near-Field Self-Comparison Measurements”, Proc. Antenna Measurement Techniques Association  (AMTA) Annual Symp., 2004. G. Hindman, A. Newell, “Simplified Spherical Near-Field Accuracy Assessment”, Proc. Antenna Measurement Techniques Association (AMTA) Annual Symp., 2006. G. Hindman & A. Newell, “Mathematical Absorber Reflection Suppression (MARS) for Anechoic Chamber Evaluation and Improvement”, Proc. Antenna Measurement Techniques Association (AMTA) Annual Symp., 2008. Pelland, Ethier, Janse van Rensburg, McNamara, Shafai, Mishra, “Towards Routine Automated Error Assessment in Antenna Spherical Near-Field Measurements”, The Fourth European Conference on Antennas and Propagation (EuCAP 2010) Pelland, Hindman, “Advances in Automated Error Assessment of Spherical Near-Field Antenna Measurements”, The 7th European Conference on Antennas and Propagation (EuCAP 2013)

Investigation of Higher Order Probe Corrected Near-Field Far-Field Transformation Algorithms for Precise Measurement Results in Small Anechoic Chambers with Restricted Measurement Distance
Yvonne Weitsch,Thomas. F. Eibert, Raimund Mauermayer, Leopold G. T. van de Coevering, November 2015

For today's sophisticated antenna applications, the accurate knowledge of 3D radiation patterns is increasingly important. To measure the antennas under far-field conditions over a broad frequency band is hereby hardly impossible. By near-field to far-field transformation, one can overcome the difficulties of limited measurement distances. In common spherical near-field antenna measurement software, the transformation based on spherical mode expansion is typically implemented. These software tools only provide to correct the influence of first order azimuthal probe modes. The influence of the probe’s higher order modes though increases with shorter measurement distances. To measure a broad frequency range in one measurement set-up and to save time, dual ridged horns are popular candidates since they operate over a wide frequency range. The drawback is that they are probes of higher order. In this contribution, we will present an investigation on near-field measurements which are transformed into the far-field deploying the transformation technique based on spherical modes which is extended by a higher order probe correction capability. The resulting diagrams comparing first and higher order probe correction show that a correction is important in particular for the cross polarization In addition, the near-field data is transformed with an algorithm which employs a representation by equivalent currents. In this method, a higher order probe correction based just on the probe’s far-field pattern is integrated. The equivalent currents supported by an arbitrary Huygens surface allows to reconstruct the current densities close to the actual shape of the AUT which is mandatory for precise antenna diagnostics. Another issue needs to be accounted for regarding limited measurement distances and spherical modal expansion. While representing the AUT and the probe in spherical modes the radii of the spheres grow the more modes are included which depends on the sizes of the TX and the RX antennas. It has to be ensured that both spheres do not interfere.  All measurements were carried out in the anechoic chamber of our laboratory in which measurements starting at 1 GHz are practicable according to the dimension of the chamber and of the absorbers. Due to our restricted measurement distance of 0.57 m, all the above mentioned rules need to be considered. In conclusion, small anechoic chambers are also capable of delivering precise antenna measurements over a broad frequency range due to algorithms capable of higher order probe correction.

A Study on the Effects of Influence Factors for Antenna Radiation Efficiency Measurements in Anechoic Chamber
Qi Wanquan ,Tian Hong Loh, November 2015

?Radiation efficiency is an important attribute of an antenna that can be calculated from its gain and directivity. This paper focuses on investigating the effects of influence factors for antenna radiation efficiency measurement in an anechoic chamber (AC). The gain transfer method (GTM) is used widely during the gain measurement, but the results can be influenced by many factors. A comparison of gain measurement performed by GTM and the three-antenna method (TAM) is presented. All measurements were carried out between 1 GHz and 8 GHz in an anechoic chamber with a double-ridged waveguide horn antenna as the antenna under test (AUT), which has a relatively broad half-power beamwidth. The results show that the maximum difference between the two methods is about 1.5 dB and the GTM may bring greater measurement uncertainty. To evaluate the influence of directivity and its repeatability, two sets of directivity measurements were performed using four different antenna mounting brackets, namely: Rohacell foam, Tufnol, metal, and metal covered by radio frequency absorber. Amongst the antenna mounting brackets, the Tufnol bracket gives the best repeatability performance. The antenna axial symmetrical properties were also assessed for each antenna mounting bracket except for Rohacell foam. The results shows that the gain measurement has more influence over characterization of antenna radiation efficiency as compared with the directivity measurement. To improve accuracy for radiation efficiency measurement, one suggests to use TAM for the antenna gain measurement.

How, When, Where, and Why does “MARS” Work?
Ronald Pogorzelski, November 2015

The Mathematical Absorber Reflection Suppression (MARS) was originally applied in spherical nearfield measurements. [G. Hindman and A. C. Newell, AMTA, Newport, RI, 2005.]  One samples the field with the antenna shifted from the rotation axis by about one aperture diameter and mathematically shifts the resulting modal expansion to a new origin centered on the antenna.  Subsequently filtering to low order modes limited by the maximum radial extent of the antenna about this origin, reduces the impact of measurement chamber artifacts because it removes modes associated with the artifacts alone.  It does not completely remove the effects of the artifacts however because it does not remove all such modes.  In this paper it is shown that the effects of MARS can be understood in terms of the equivalence principle of electromagnetic theory and images produced by the artifacts. The treatment begins with a discussion of two spherical nearfield scanning geometries, one in which the antenna under test (AUT) is rotated and the probe is fixed and the other in which the AUT is fixed and the probe moves over a sphere enclosing it.  Because MARS has recently been extended to planar nearfield measurements [S.F. Gregson, A.C. Newell, G.E. Hindman, M.J. Carey, AMTA, Atlanta, 2010], analogous planar geometries are proposed and analogies are drawn between the spherical and planar cases.  In terms of these geometries, potential artifacts are classified according to their locations relative to the scan surfaces.  For those classes of artifact treatable via MARS, the impact of mode filtering is discussed using image theory where applicable.  Differences in the fixed probe and fixed AUT geometries are discussed as are the results of commonly applied approximations.  Finally, the utility of spherical expansion of the planar measurements is discussed in terms of recent demonstrations of planar MARS and the manner in which the advantageous effects of MARS obtain in these demonstrations is detailed.  [Gregson, et al., AMTA, Denver, 2011][L. J. Foged, et al., AMTA, Seattle, 2012]

Full-wave Modelling of Pyramidal Absorbers
Amin Enayati,Arya Fallahi, November 2014

There are different applications where the radiation level of the electromagnetic waves are needed to be controlled or reduced. One way to achieve a functional passive control of the radiation level is by the use of electromagnetic-wave absorbers. The absorption efficiency is not only gained by the electromagnetic characteristics of the base material but also by the geometrical shape of the absorber specifically for wideband absorbers. One of the main applications of wideband absorbers is in anechoic chambers. In anechoic chambers, the walls of the chamber are lined with different absorbing panels each of which have different geometrical shapes. Two major groups of wideband absorbers are the wedge and pyramidal absorbers. When an infinite wall is lined completely with one type of these absorbers, the resulting electromagnetic problem will be a 1-dimensional (for the case of wedge absorber) or a 2-dimensional (in the case of pyramidal absorber) periodic-boundary-condition problem. A semi-analytical method based on a multi-conductor-transmission-line model has been previously introduced to solve the 1-dimesional problem (wedge absorbers) [1]. A modified method has been developed and will be introduced for the 2-dimensional problem (pyramidal absorbers). Some examples comparing the simulation results with the measurements ones will show the efficiency of the proposed method for the pyramidal absorbers. [1] A. Enayati, and A. Fallahi,“ Full-wave modeling of wedge absorbers”, ATMS 2014, Chennai, India.

Accurate Planar Near-Field Antenna Measurements Without Full Anechoic Chamber
Greg Hindman,Stuart Gregson, Allen Newell, November 2014

In recent times, planar near-field antenna measurements have largely been performed within fully absorber lined anechoic chambers.  However this is a comparatively recent development as, due to the nature of the electromagnetic radiation when measuring medium to high gain antennas, one can often obtain excellent results when testing within only a partially absorber lined chamber [1], or in some cases even when using absorber placed principally behind the acquisition plane. As absorber can be bulky and costly, optimizing its usage often becomes a significant factor when planning a new facility.  This situation becomes more pressing when the designated test environment is not exclusively devoted to antenna pattern testing with non-ideal absorber coverage being, in some cases, mandated, c.f. EMC testing.  Planar test systems lend themselves to deployment within multipurpose installations as they are routinely constructed so as to be portable [2] thereby allowing partial or perhaps complete removal of the test system between measurement campaigns. This paper will present measured data taken using a number of different planar antenna test systems with and without anechoic chambers to summarize what is achievable and to provide design guidelines for testing within non-ideal anechoic environments.  NSI’s Planar Mathematical Absorber Reflection Suppression (MARS) technique [3, 4] will be utilized to show additional improvements in performance that can be achieved through the use of modern sophisticated post processing. Keywords: Planar Near-Field, Reflection Suppression, Scattering, MARS. REFERENCES S.F. Gregson, A.C. Newell, G.E. Hindman, M.J. Carey, “Extension of The Mathematical Absorber Reflection Suppression Technique To The Planar Near-Field Geometry”, AMTA, Atlanta, October 2010. G.E. Hindman, “Applications of Portable Near-Field Antenna Measurement Systems”, AMTA, October, 1991. S.F. Gregson, A.C. Newell, G.E. Hindman, “Advances In Planar Mathematical Absorber Reflection Suppression”, AMTA, Denver, Colorado, October 2011. S.F. Gregson, A.C. Newell, G.E. Hindman, P. Pelland, “Range Multipath Reduction In Plane-Polar Near-Field Antenna Measurements”, AMTA, Seattle, October 2012.

Dual Polarized Near Field Probe Based on OMJ in Waveguide Technology Achieving More Than Octave Bandwidth
Lars Jacob Foged,Andrea Giacomini, Roberto Morbidini, Vincenzo Schirosi, Sergey Pivnenko, November 2014

In classical probe-corrected spherical near-field measurements, one source of measurement errors, not often given sufficient consideration is the probe [1-3]. Standard near-field to far-field (NFFF) transformation software applies probe correction with the assumption that the probe pattern behaves with a µ=±1 azimuthal dependence. In reality, any physically-realizable probe is just an approximation to this ideal case. Probe excitation errors, finite manufacturing tolerances, and probe interaction with the mounting interface and absorbers are examples of errors that can lead to presence of higher-order spherical modes in the probe pattern [4-5]. This in turn leads to errors in the measurements. Although probe correction techniques for higher-order probes are feasible [6], they are highly demanding in terms of implementation complexity as well as in terms of calibration and post-processing time. Thus, probes with high azimuthal mode purity are generally preferred.   Dual polarized probes for modern high-accuracy measurement systems have strict requirements in terms of pattern shape, polarization purity, return loss and port-to-port isolation. As a desired feature of modern probes the useable bandwidth should exceed that of the antenna under test so that probe mounting and alignment is performed only once during a measurement campaign. Consequently, the probe design is a trade-off between performance requirements and usable bandwidth. High performance, dual polarized probe rely on balanced feeding in the orthomode junction (OMJ) to achieve good performance on a wide, more than octave, bandwidth [5-7]. Excitation errors of the balanced feeding must be minimized to reduce the excitation of higher order spherical modes. Balanced feeding on a wide bandwidth has been mainly realized with external feeding network and the finite accuracy of the external components constitutes the upper limits on the achievable performance.     In this paper, a new OMJ designed entirely in waveguide and capable of covering more than an octave bandwidth will be presented. The excitation purity of the balanced feeding is limited only by the manufacturing accuracy of the waveguide. The paper presents the waveguide based OMJ concept including probe design covering the bandwidth from 18-40GHz using a single and dual apertures. The experimental validation is completed with measurements on the dual aperture probe in the DTU-ESA Spherical Near-Field facility in Denmark.       References: [1]Standard Test Procedures for Antennas, IEEE Std.149-1979 [2]Recommended Practice for Near-Field Antenna Measurements, IEEE 1720-2012 [3]J. E. Hansen (ed.), Spherical Near-Field Antenna Measurements, Peter Peregrinus Ltd., on behalf of IEE, London, UK, 1988 [4]L. J. Foged, A. Giacomini, R. Morbidini, J. Estrada, S. Pivnenko, “Design and experimental verification of Ka-band Near Field probe based on wideband OMJ with minimum higher order spherical mode content”, 34th Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2012, Seattle, Washington, USA [5]L. J. Foged, A. Giacomini, R. Morbidini, “Probe performance limitation due to excitation errors in external beam forming network”, 33rd Annual Symposium of the Antenna Measurement Techniques Association, AMTA, October 2011, Englewood, Colorado, USA [6]T. Laitinen, S. Pivnenko, J. M. Nielsen, and O. Breinbjerg, “Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near- eld antenna measurements with high-order probes,” IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2623–2631, Aug. 2010. [7]L. J. Foged, A. Giacomini, R. Morbidini, "Wideband dual polarised open-ended waveguide probe", AMTA 2010 Symposium, October, Atlanta, Georgia, USA. [8]L. J. Foged, A. Giacomini, R. Morbidini, “ “Wideband Field Probes for Advanced Measurement Applications”, IEEE COMCAS 2011, 3rd International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, November 7-9, 2011.

A Dual-Linearly-Polarized Horn with Low Sidelobes for the upper VHF range: The Quasi-Open-Boundary Quad-Ridged Antenna
Vince Rodriguez, November 2014

RCS Measurements at the upper half of the VHF range of the spectrum have become increasingly important. This type of measurement is usually performed in an outdoor RCS range. The present paper shows a design for an antenna that can be used to illuminate a reflector or as the illuminating structure in a RCS measurement. The antenna is fairly compact given the wavelength and exhibits a low VSWR and a good time domain performance for use with pulses. The new antenna has low side-lobes that otherwise could illuminate adjacent structures to the outdoor range and reduce the dynamic range of the measurements, this is an improvement over the Open-Boundary Quad-Ridged Horns Introduced over the past 9 years. The new Feed is a Quasi-Open-Boundary Horn, in which RF absorber material is used to create the Open Boundary behavior, but an enclosed structure is  used to block the potential side-lobe radiation.

Surface and Internal Temperature versus incident field measurements of Polyurethane based absorbers in the Ku band
Zhong Chen,Vince Rodriguez, November 2013

I. INTRUDUCTION In the heating process of microwave absorbers under incident electromagnetic waves, two disciplines of physics are intertwined, i.e., electromagnetic waves behavior governed by Maxwell’s equations and heat transfer process dictated by laws of thermodynamics. The power density in the absorbers due to the electromagnetic .eld is given by p= s|E|2 =2po0 o ' f|E|2 (1) where, E is the total electric .eld (V/m) in the material, s is electrical conductivity of the material (S/m), o0 is the free space permittivity (8.854 × 10-12 F/m), o' is the imaginary part of the relative dielectric constant, and f is the frequency in Hz. This is point form of the Joule’s law, and is well understood by RF engineers. The EM behavior of the polyurethane absorbers can be numerically computed. The EM .eld acts as the heating source, and its distribution in the absorber can provide a good indication on the locations of hot spots. Polyurethane foam is an excellent insulator, so the conductive heat loss may be minimal. The heat exchanges can be reasonably described by radiation and convection transfers. Radiation takes place in the form of EM wave, mainly in the infrared region. The net power transferred from a body to the surroundings is described by Stefan-Boltzmann’s law [1], prad = osA(T4 -T04 ) (2) where A is the surface area, T is the surface temperature of the radiation body in K, and T0 is the ambient temperature in K. Unfortunately, the conventional symbols used in heat transfer s and o are not the same as those in Eq. (1). s here is the emissivity or emission coef.cient, and is de.ned as the ratio of the actual radiation emitted and the radiation that would be from a black body. o in Eq. (2) is the Stefan-Boltzmann constant (5.67 × 10-8 W/m2 K4 ). The context in the paper should make it clear which symbols the authors are referring to. Otherwise, we will make explicit references. The convective heat transfer is due to the motion of air surrounding the absorbers. Two forms can take place, naturally or by forced air. The relationship is described by Newton’s law of cooling [1]: pconv = hA(T -T0 ) (3) where h is the convection heat transfer coef.cient in (W/m-2 K-1 ). h is often treated as a constant, although it can be a function of the temperature. Eq. (3) assumes that the ambient air is abundant, and is taken to be constant. This is a reasonable assumption, because the heating is typically con.ned to a small localized area in a relatively large anechoic chamber. Combining the two mechanisms of heat transfer, the total heat loss is given by p= osA(T4 -T4 )+ hA(T -T0 ) (4) 0 It is possible to solve for the temperatures from coupled Maxwell’s and heat transfer equations. Realistic results require accurate electrical and thermal properties of the materials. It is often a non-trivial process to obtain the material properties in and of itself. Careful validation is warranted before we can have full con.dence in the results. In this paper, we adopt a measurement approach instead. We conduct a series of experiments to measure the temperature both on the surface of the absorbers using an infrared imaging camera, and internally using thermocouple probes inserted into the absorbers. Temperature pro.les versus applied E .eld are experimentally established. From the measured data, we curve .t to Eq. (4) or other mathematical functions. These functions are useful to calculate results at other .eld levels, e.g., extrapolating to a higher .eld where measurement results cannot be readily obtained. II. FIELD DISTRIBUTION INSIDE THE ABSORBERS Numerical analysis was performed using Ansys HFSS, a commercially available Finite Elements software package. As it was described in [2], symmetry is taken advantage of, so only one quarter of the pyramidal absorber is solved. The quarter pyramid is located inside a square cross section prism that bounds the computational domain. The structure is fed using a port located on the top of the geometry and the side boundaries of the domain are set as perfect electric conductor (PEC) or perfect magnetic conductor (PMC). The base is modeled as PEC. This is exactly the same approach taken in [2]. The structure of a CRV-23PCL-4 is analyzed at 12.4 GHz, the same frequency as used in the measurements. The resulting .eld is extracted at one plane. The plane is one of the two orthogonal planes that cut the pyramid in 4 sections. Fig. 1 shows the .eld distribution at 12.4 GHz. The curvature of the absorber pro.le has been added for clarity. The results are an approximation. The permittivity of the material is assumed to be fairly constant from 6 GHz to 12 GHz. The purpose of the numerical analysis is to check the expected .eld distribution in the pyramid, which we can use to compare with the infrared (IR) images of the absorbers taken during the measurements. Fig. 1. Electric Field distribution at 12.4 GHz The .eld distribution data shows that most of the .eld exists on the upper third of the pyramid. It also shows that there is a region of high .eld existing in the valleys between the pyramids. The surface temperature pro.le from the IR pictures shows that this is an real phenomena. On the other hand, the .eld is higher at the very tip of the absorber. Measurements from the IR images seem to contradict this result. This can be explained. Since the tip is smaller, it cools faster to the surrounding ambient temperature. III. EXPERIMENTAL SETUP AND DATA Experiments were performed on ETS-Lindgren CRV-23PCL-8, and CRV-23PCL-4 absorbers at 12.4 GHz. Both types are 23” long from tips to bases. A piece has a base size of 2’ × 2’. A CRV-23PCL-8 piece consists of 8×8=64 pyramids, whereas a CRV-23PCL-4 piece consists of 4×4=16 pyramids. The two types are designed to have similar RF performances, but the CRV-23PCL-8 is made of slender pyramids to facilitate better heat transfers to the surroundings [2]. The absorbers are mounted on a particle board with metallic backings, and are placed in front a Ku band horn antenna with a circular aperture (the gain is approximately 20 dBi). A 300W ampli.er is used, and the power to the antenna is monitored through a 40 dB directional coupler connected to a power meter. The test setup is shown in Fig. 2. The ambient temperature is at 23.C. Fig. 2. Test setup using a conical horn antenna to illuminate the absorbers As a .rst step, a 200 V/m .eld is generated by leveling to a calibrated electric .eld probe. The distance from the probe to the antenna is 30”. At this distance, near .eld coupling is assumed neglegible, and the incident wave uniform (numerical simulation also validated these assumptions). The power needed to generate 200 V/m .eld is recorded. Next, the .eld probe is replaced with the absorbers under test. The tips of the absorbers are placed at the same distance (30”) from the antenna. Other .eld strengths can be leveled by scaling from the power for 200 V/m. A. Surface Temperature Figs. 3 and 4 show two examples of the infrared images taken after the temperature reached equilibrium under a constant 700 V/m CW at f=12.4 GHz for the two types of absorbers described earlier. There is no forced air.ow during the measurement. Table 1 summarizes the resulting temperatures on the absorber surfaces at different .eld levels. Tests were performed on two .nishes of otherwise identical CRV-23PCL-8 absorbers, i.e., fully covered with rubberized paint, or with latex paint. The data indicates that the paint has minimal effects on absorber temperatures. Table 1 also lists data for the wider CRV-23PCL-4 absorbers (with latex paint). B. Internal Temperature of the Absorber recorded by Thermocouples Three thermocouples are inserted in the CRV-23PCL-8 which are painted with rubberized coating. They are inserted at distances of 4”, 6”, and 8” from the tip of the pyramid, as illustrated in Fig. 5. Fig. 6 shows the temperatures measured by the three sensors. The temperatures at 8” from the tip are consistently higher than at other locations. There is a gap in the data at 700 V/m because RF power was turned off brie.y. Internal temperature reached 115 .C under 1.7 kW/m2 Fig. 3. Infrared camera image for incident electric .eld of 700 V/m. The absorber is the slender CRV-23PCL-8. Fig. 4. Infrared camera image for incident electric .eld of 700 V/m. The absorber is the wider CRV-23PCL-4. (800 V/m). Since the maximum allowed temperature for the polyurethane foam material is 125 .C, the incident power density is recommended to stay less than 1.7 kW/m2 for CRV-23PCL-8 absorbers mounted vertically and with natural convection in a 23.C room. After the temperature reached equilibrium under 800 V/m, additional air.ow was introduced by turning on a 6” diameter fan at 45” in front of the absorbers. The air.ow rate was measured to be approximately 80 ft/min at this distance. Note that this is a rather moderate air.ow, which can arise naturally from air-conditioning vents in a chamber. As shown in Fig. 6, the internal temperature quickly dropped to 102.C from 115.C. TABLE I MAXIMUM SURFACE TEMPERATURE RECORDED BY THE IR CAMERA (AT EQUILIBRIUM). T0 =23. C. E Power CRV-23PCL-8 CRV-23PCL-8 CRV-23PCL-4 (V/m) Density rubberized latex (. C) rubberized (kW/m2 ) (. C) (. C) 200 0.11 24 300 0.24 28 360 0.34 30 400 0.42 35 36 43 500 0.66 41 50 600 0.95 54 67 700 1.30 63 82

Advancements in Achieving What is Asked of a Compact Range
David J. Wayne,Donald Bodnar, Ph.D, John McKenna, November 2013

Phase variation = +/-10 deg. 18 to 40 GHz Phase variation = +/-20 deg. 40 to 110 GHz Cross Polarization = -30 dB III. MAXIMUM AVAILABLE SPACE Consistency of performance across a waveguide band levies demands on compact range feeds. Because of the constraint of the room size, the design starts with determining the maximum space available for the This paper addresses a recent compact range development by MI reflector. The next step will be to determine the combination of Technologies that achieves desired extended low frequency and reflector body and edge treatment size within that space to millimeter wave performance (1 to 110GHz) while maintaining a deliver the desired performance. To determine the space cost effective reflector size and a small range footprint. The paper available for the reflector a chamber layout analysis is will explore the conventional rule-of-thumb relationships performed. Appropriate absorber is selected and, allowing for between feed, reflector, edge treatments and range geometries an air gap of at least 2 wavelengths at the lowest desired while contrasting them to the resultant design. The paper will frequency between the absorber and the reflector, and allowing highlight an impressive new family of compact range feeds and advancements in cost effectively achieving a superior reflector height for the compact range feed positioner yields the surface. allowable reflector dimensions to be 194 inches high and 222 inches wide as shown in Table 2. The combination of reflector

Scattering of residual field above and beyond the quiet zone of a compact range
Pax Wei, November 2013

Abstract: In order to characterize the Boeing 9-77 compact range, the empty chamber background was measured as a function of frequency, polarization, and the azimuth angle of the upper turn-table (UTT). The results exhibited a near-field diffraction pattern with enlarged hot-spots on a 4-fold symmetry [1]. A 2-D FFT on the diffraction pattern yielded a mapping on the relative arrangement of the absorbers on the UTT [2]. In this paper, we take a closer look at the scattering geometry of the UTT as illuminated by the residual field above and beyond the quiet zone (QZ). The different responses in VV and HH are discussed. The enhanced diffraction due to a “blazed grating” condition is identified and analyzed.

A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements
Guy DeMartinis,Michael Coulombe, Thomas Horgan, Brian Soper, Jason Dickinson, Robert Giles, William Nixon, November 2013

Abstract— A fully polarimetric compact radar range operating at a center frequency of 100 GHz has been developed for obtaining radar cross section, inverse synthetic aperture radar imagery and high range resolution profiles on targets and structures of interest. The 100 GHz radar range provides scale-model RCS measurements for a variety of convenient scale factors including W-Band (1:1 scale), C-band (1:16 scale), and S-band (1:26 scale). An overview of the radar range is provided in this paper along with measurement examples of ISAR scale-model imaging, scale-model through-wall imaging, and preliminary kHz sweep-rate Doppler that demonstrate a few of the diverse and unique applications for this system. The 100 GHz transceiver consists of a fast-switching, stepped, CW microwave synthesizer driving dual-transmit and dual-receive frequency multiplier chains. The stepped resolution of the system’s frequency sweep is sufficient for unambiguous resolution of the entire chamber. The compact range reflector is a CNC machined aluminum reflector edge-treated with FIRAM™-160 absorber serrations and fed from the side to produce a clean quiet zone. This range is the latest addition to a suite of compact radar ranges developed by the Submillimeter-Wave Technology Laboratory providing scale-model radar measurements at nearly all of the common radar bands.

Surface Electromagnetic Wave Characterization Using Non-invasive Photonic Electric Field Sensors
James Toney,Vincent E. Stenger, Peter Pontius, Andrea Pollick, Sri Sriram, Chi-Chih Chen, November 2013

Abstract— Electromagnetic properties of aircraft and missile skins have a large effect on radar cross sections and determine the level of stealth that is achieved over the various RF bands currently in use. RF absorption, reflection, and propagation along the skin surface all serve as important measures of the electromagnetic performance of the coated surfaces. Non-invasive probing of the electromagnetic field just above the propagating wave at multiple spots along the propagation direction can be used to determine and measure wave propagation parameters, including effective RF index, loss per length, wave impedance, and frequency dependent material properties of the coatings. Wide-band photonic electric field sensors have been demonstrated for probing of dielectric layers by measuring the traveling waves along the coated aircraft surface. The photonic E-field sensors are extremely linear and produce an exact real time analog RF representation of the electric field, including phase information. These ultra-wideband (UWB) photonic RF sensors are very small and contain negligible metal content, allowing them to be placed at close proximity without perturbing the RF surface waves. This is very important in accurately characterizing highly damped surface waves on absorber layers. This paper discusses the linearity, bandwidth, polarization, and sensitivity of the unique UWB photonic E-field sensor design. Experimental results are presented on surface-wave characterization measurements using these sensors.

Power Handling Considerations in a Compact Range
Marion Baggett, October 2013

More complex antennas with higher transmit power levels are being tested in compact range environments. AESA's and other phased array antennas can transmit significant power levels from a relatively small volume. Without consideration of the impact of the transmitted power levels for a given test article, human and facility safety could be at risk. This paper addresses designing a test chamber in light of these power handling considerations for high power antennas on two fronts: 1) A methodology is presented to determine the power levels seen by surfaces in the chamber that are covered with absorber material and 2) Calculating the power levels seen at the compact range feed due to the focusing effect of the compact range itself. A test case is presented to show the application of the methods.

An Artificial Lossy Dielectric Material Standard for RF Free Space Measurements
David Reid, Mark Scott, John Schultz, Kathleen Silver, Matthew Habib, Charlie Hunter, October 2013

A new material validation and verification standard is designed to imitate the behavior of a lossy dielectric absorber. This standard is constructed from well-characterized, low-loss materials in a manner that ensures manufacturing repeatability. The performance of this standard is verified with S-parameter and permittivity measurements in a free space focused beam system and with finite difference time domain simulations. A sensitivity analysis, based on a series of simulations, is presented to quantify the uncertainty in the measured S-parameters due to dimensional and alignment variations from the ideal design values.

Scattering Suppresion in a Combined Compact Range and Spherical Near-field Measurement Facility
Hammam Shakhtur, Rasmus Cornelius, Dirk Heberling, October 2013

Stray signals/scattering suppression techniques will be deployed to enhance measurements quality of a combined compact antenna test range (CATR) and spherical near-field (SNF) measurement facility. Spherical mode filtering and softgating techniques will be the focus of this paper. Using soft-gating the mutual effects between the CATR and SNF facilities will be shown and mitigated. The use of SNF decomposition to enhance the far-field measurements will be also shown. This contributes to a reduction of the costs arising from the need of absorbers to shield both facilities and cover the antenna's support structure.

Modeling and Analysis of Anechoic Chamber using CEM Tools
C.J. Reddy,EM Software & Systems (USA) Inc., November 2012

Advances in computational resources facilitate anechoic chamber modeling and analysis at VHF frequencies using full-wave solvers available in commercial software such as FEKO. The measurement community has a substantial and increasing interest in utilizing computational electromagnetic (CEM) tools to minimize the financial and real estate resources required to design and construct a custom anechoic chamber without sacrificing performance. A full-wave simulation analysis provides a more accurate solution than the approximations inherent to asymptotic ray-tracing techniques, which have traditionally been exploited to overcome computational resource limitations. An anechoic chamber is simulated with a rectangular down-range cross-section to utilize the software’s capability to assess polarization performance. The absorber layout within the anechoic chamber can be optimized using FEKO for minimal reflections and an acceptable axial ratio in the quiet zone. Numerical results of quiet zone disturbances and axial ratios are included for both low- and medium-gain source antennas over a broad frequency range.

“Defects” of Specular Patches in Elongated Anechoic Chambers
John Aubin,ORBIT/FR Inc., November 2012

Specular patches comprising pyramidal absorber components are frequently used in anechoic chambers to suppress potential DUT coupling with the side walls, floor and ceiling of the chamber. However, these specular patches also interact with the incident field radiated by the source antenna, compact range reflector, or tapered chamber feed illuminating the chamber. If the specular patch reflects the incident field in GO fashion, then the reflected field is incident on the absorptive back wall and is sufficiently attenuated there, so that there is no significant degradation of the field uniformity in the Quiet Zone due to the reflected field. If, however, the chamber is long, and the grazing angle of the incident field on the specular patches is relatively low, “non-specular” reflections incident on the Quiet Zone will perturb the field, and accordingly will degrade the field uniformity. If the chamber is operating at high frequencies (e.g., above several GHz) and the distance between the Quiet Zone and side walls is significant in terms of wavelengths, then the “non-specular” reflections will not impact the field uniformity to a noticeable extent, as they are attenuated in free space while propagating from the specular patches to the Quiet Zone. If the chamber is intended for operation at VHF/UHF frequencies, as is prevalent in tapered chambers, then the “non-specular” reflections may be the dominant factor affecting the Quiet Zone uniformity. In this paper the measured reflectivity in a tapered chamber with pyramidal specular patches is presented, illustrating a significant rise of the reflectivity over a portion of the VHF/UHF bands. Thorough investigation has shown the source of the degraded reflectivity to be the specular patch. This effect has been confirmed by simulation, and is analyzed by modeling the specular area as a periodic structure. Replacement of the specular patches by wedges has materially improved the reflectivity in the chamber, as will be shown by comparative reflectivity measurement results. For the application under consideration, the coupling between the DUT and sidewalls was below the specified minimum and, thus, advanced coupling suppression techniques were not required. For more stringent coupling requirements, the use of the ORBIT/FR patented “Two Level GTD” technology (see, for example, [1-4]) is a good choice to minimize reflectivity and DUT/sidewall coupling simultaneously.







help@amta.org
2024 Antenna Measurement Techniques Association. All Rights Reserved.
AMTA_logo_115x115.png
 
 

CONNECT WITH US


Calendar

S M T W T F S
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31